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Abstract
The singular value decomposition of a rectangular matrix is a basic tool to understand the structure of the

data and particularly the relationship between row and column factors. However, conventional singular value
decomposition used the least squares method and is not robust to outliers. We propose a simple robust singular
value decomposition algorithm based on the weighted least absolute deviation which is not sensitive to leverage
points. Its implementation is easy and the computation time is reasonably low. Numerical results give the data
structure and the outlying information.
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ation

1. Introduction

The singular value decomposition(SVD) of a rectangular matrix is a valuable tool in unveiling its
structure and has found wide-ranging applications such as data analysis, signal processing, pattern
recognition, image processing and compression. In statistical analysis, SVD is fundamental for using
the biplot (Bradu and Gabriel, 1978), correspondence analysis (Greenacre, 1984) and principal com-
ponent analysis. Recently Liu et al. (2003) used SVD for analyzing microarray data. It is known that
gene expression data are well suited to analysis using SVD.

The conventional approach to the SVD does not permit any missing elements, for example mi-
crogene data is usually not complete. Gabriel and Zamir (1979) proposed an alternative method to
address this problem, an alternating least squares(ALS) algorithm. However, they used a least squares
algorithm which is known to be highly sensitive to outliers. In the extreme case, an individual cell,
if sufficiently outlying, can draw even the leading principal component toward itself (Hawkins et al.,
2001). It is therefore desirable to construct a robust SVD.

To achieve robustness, Hawkins et al. (2001) considered a robust fit in alternating regression using
least absolute deviation(ALAD) regression. Liu et al. (2003) used the least trimmed squares(LTS)
method (Rousseeuw, 1984) in alternating fitting. Croux et al. (2003) implemented the weighted LAD
estimator in factor analysis model. Chen et al. (2008) compared the above robust estimators in the
sense of computational issues. They concluded that the LTS estimator is subject to dead cycles and
it is computationally expensive, even if the LTS estimator is robust against high leverage outliers
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with its fast algorithm available in R and SAS. The LAD estimator always converges, but it is sen-
sitive to leverage points (Croux et al., 2003). We propose a robust SVD based on a weighted LAD
estimator(AWLAD).

In Section 2 we review SVD and discuss the deficiencies of the conventional SVD such as non-
robustness and intractability of missing data. In Section 3 we describe robust alternating regression
estimators to resolve the above deficiencies that are followed by our proposed algorithm of AWLAD
with the consideration of computational time and robustness in Section 4. Some numerical results of
the proposed algorithm are given in Section 5.

2. Conventional Singular Value Decomposition

Let X denote an n × p matrix of real-valued data and rank r, where without loss of generality n ≤ p,
and therefore r ≤ p. And let xi j denote the element of X. The equation for SVD of the matrix X is

X = UDVT ,

where U is the n × p column-orthogonal matrix of left eigenvectors, V the p × p orthogonal matrix of
right eigenvectors, and D the p× p diagonal matrix with elements dis which are called singular values.
Let ui and vi for the ith left and right eigenvectors, respectively. Then the matrix X can be rewritten
as

X =
r∑

i=1

diuivT
i . (2.1)

When we sum up to small k instead of r, the term X(k) =
∑k

i=1 diuivT
i is the closest rank-k matrix to X.

The term closest means that X(k) minimizes the sum of the squares of the difference of the elements
of X and X(k).

The SVD is often found through a principal component analysis on either XT X or XXT . The
eigenvalues and eigenvectors of XT X becomes the squares of eigenvalues and the right eigenvectors
V of the matrix X, respectively, because we have

XT X = VDUT UDVT = VD2VT .

And then U = XVD−1. The conventional SVD has two serious deficiencies. First, it requires the
complete data matrix X. Even if only one element was missed, then the computation is implausible.
The missing data occurs often in experimental data such as microarray data. Second, the conventional
SVD uses a least squares method and it is very sensitive to outliers or susceptible observations. Such
outliers should be accommodated when dealing with microarray data, where a sprinkling of entries
are found to be very large or small (Liu et al., 2003).

3. Robust Alternating Regressions

Gabriel and Zamir (1979) introduced so called alternating regression(or criss-cross regression) with
least square fits to resolve the missing information deficiency. The procedure seeks the leading eigen
triple d1,u1, v1 of the least squares approximation to X. The ALS algorithm iteratively for di,ui, vi for
i = 2, . . . , p. Denote by θ = (d1, . . . , dn, uT

1 , . . . , u
T
p , vT

1 , . . . , v
T
p ) the vector of all singular values and

eigenvectors and let

x̂i j(θ) =
p∑

l=1

dluilv jl
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be the fitted value of xi j by the singular value decomposition. Given u1 we can get the regression
coefficient d1v1 using a least squares method by minimizing for j = 1, . . . , p,

n∑
i=1

(xi j − x̂i j(θ))2. (3.1)

By scaling the vector to unit length we have v1 and the scale factor d1. And then given v1 we can get
u1 by a similar procedure. The eigen triple d1,u1, v1 gives the first term of the conventional SVD.

Gabriel and Zamir (1979) showed that the procedure converges to the true leading eigenvalue and
eigenvector triple, because each step of the ALS decreases the residual sum of squares from that of
the previous step. After the first leading eigen triple has been found, the data matrix X is replaced by
X − d1u1vT

1 and the procedure is conducted to obtain the second leading eigen triple d2,u2, v2.
The ALS approach is stable and is a remedy for missing data. However it is well known that the

least squares estimator is non-robust against outliers. In the extreme situation of a microarray context,
a single cell may draw even the leading principal component toward itself. It is therefore desirable to
develop a robust SVD. As a robust method instead of a least squares criterion Hawkins et al. (2001)
considered the LAD estimator by minimizing the absolute residual sum instead of (3.1). For example,
given u1 we use the criterion for j = 1, . . . , p,

n∑
i=1

|xi j − x̂i j(θ)|. (3.2)

The LAD estimator always converges; however, it is sensitive to leverage points (Croux et al., 2003).
Liu et al. (2003) used the LTS estimator in alternating fitting. Chen et al. (2008) compared robust
algorithms in computational speed and concluded that the LTS estimator is subject to dead cycles that
do not improve the procedure. Therefore, the LTS in alternating regression has computational burden
of time, even if the LTS estimator is robust against high leverage outliers.

Croux et al. (2003) proposed the weighted LAD estimator with a focus on a factor analysis model.
They used multiple regressions instead of simple regression iteratively. However, the procedure does
not guarantee the leading singular values and it cannot be adopted to the SVD. Gabriel and Zamir
(1979) described that the multiple regressions does not prove the convergence to the minimum of the
criterion in ALS. Thus, we propose a robust SVD based on an iteratively weighted LAD estimator.

4. Weighted LAD Algorithm

Given u1 the criterion (3.2) is replaced by the criterion of minimizing the weighted LAD norm
n∑

i=1

wi|xi j − x̂i j(θ)|, (4.1)

where wi is defined by

wi(θ) = min
1, z2

0.05

RD2
i

 , i = 1, . . . , n (4.2)

and z0.05 is the upper 5% critical value of the standard normal distribution and

RD2
i =

(ui1 − T (U))2

C(U)
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are robust distances (Rousseeuw and van Zomeren, 1990) computed from the collection U = {ui1 | 1 ≤
i ≤ n}. The robust location and scale estimators T (U) and C(U) are taken as the median and median
absolute deviation, which is a univariate version of the minimum volume estimator (Croux et al.,
2003). Giloni et al. (2006) proposed another method to determine weights for each observation.
Analogously given v1 the weight l j is defined on v1.

We use the criterion (4.1) instead of (3.2). It makes the estimator robust to leverage points and
faster than the LTS estimator. The SVD based on the weighted LAD are outlined below.

Step 1. Set the starting point u1 as the vector of median absolute values of each row.

Step 2. For i = 1, . . . , n, compute the weight wi defined in (4.2), which decreases the weight of
outlying ith row in the set of estimated vectors U. Then fit the weighted LAD regression
coefficient by computing

c j = argmin
n∑

i=1

wi

∣∣∣xi j − c jui1
∣∣∣

for j = 1, . . . , p.

Step 3. Calculate the right eigenvector v1 = c/∥c∥, where ∥c∥ is the Euclidean norm and d1 = ∥c∥.

Step 4. Compute the weight l j for j = 1, . . . , p and fit the weighted LAD regression coefficient by
computing

gi = argmin
p∑

j=1

l j

∣∣∣xi j − giv j1
∣∣∣

for i = 1, . . . , n.

Step 5. Calculate the left eigenvector u1 = g/∥g∥.

Step 6. Iterate Steps 2–6 until the convergence is satisfied.

The procedure continues until the maximum absolute value among the previous estimators and the
current estimators is less than 10−5.

Now the first eigen triple is obtained. For the second eigen triple the above steps are performed
with X = X − d1u1vT

1 . This iteration will be succeeded for 1, . . . , p.
The singular values of the conventional SVD can be usually arranged in decreasing order and the

corresponding eigenvectors can also be done. However, this is not necessarily the case with robust
SVD methods (Hawkins et al., 2001). Note that eigenvectors by the proposed algorithm may not be
orthogonal. Orthogonality requires only least squares criterion.

5. Numerical Examples

We compare the results of ALS, ALAD and AWLAD for simulation data and a real data by construct-
ing a biplot.
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Figure 1: The biplot based on the SVD by alternating least squares with outliers

5.1. Simulation

The simulation data is generated by the 11 by 11 additive data matrix xi j = µ + αi + β j + ei j, where
µ = 1;α = −5,−4, . . . , 4, 5; β = −5,−4, . . . , 4, 5 and the error ei j comes from N(0, 0.125). This data
scheme is used in Hawkins et al. (2001). The data matrix is of approximate rank two. An additive
model for the data matrix X can be confirmed by the row and column markers that are both straight
lines and lie at right angles. We can get the biplots for the ALS, ALAD and AWLAD that are similar to
the plot in which there are two perpendicular lines to each other. This correctly diagnoses an additive
model (Bradu and Gabriel, 1978).

Now after adding four outliers(adding 15 to four random cells) in the data we conducted three
SVD methods. We will show that the ALS is very sensitive to these four outliers, but AWLAD is not.
The lines from the ALS are not straight lines, but the plots from the other robust methods are almost
the same as before. It indicates that the ALS is not robust to a contaminated data, but the ALAD and
AWLAD are robust.

We contaminate the data by adding four outliers(adding 50 to four consecutive cells). The biplots
by those methods are depicted in Figures 1 to 3. As shown in Figures 1 and 2, the ALS and the
ALAD do not represent a straight line. In addition, we cannot infer an additive model. However,
in Figure 3 the AWLAD presents straight lines which are perpendicular to each other and gives the
outlying information on one row of data matrix. Figure 2 may be resulted from the fact that the ALAD
estimator is sensitive to leverage points. Also, the right angles between two straight lines in Figure 3
indicates an additive model. In Figure 3 the row marker of cell 4 is not invisible, because the value
is above the limit of the vertical axis. It implies that the 4th row vector is outlying and are leverage
points.

5.2. Real data

The data on specific volume of rubber is analyzed by Bradu and Gabriel (1978) and Hawkins et
al. (2001). The data are from a three factor layout: treatment of rubber(2 levels), temperature(4
quantitative levels), pressure(6 quantitative levels). The data is incomplete in that no observations on
one cell. See Bradu and Gabriel (1978) for details.
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Figure 2: The biplot based on the SVD by alternating least absolute deviation with outliers
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Figure 3: The biplot based on the SVD by alternating weighted least absolute deviation with outliers

A three factor layout can be a two way model by combining two factors, temperature and treatment
as rows. We performed the ALS, ALAD and AWLAD estimators, because alternating regressions can
treat missing data. Three methods estimated the missing value at 176.75, 175.13, 175.13, respec-
tively. The three methods had a similar biplot that all the column markers(pressure levels) constitute a
straight line and all the row markers(temperature and treatment) roughly constitute a straight line that
is perpendicular to the line of column markers (Hawkins et al., 2001).

As in the previous subsection, we contaminate the data by adding 500 to a specific level(400 level
of pressure and peroxide cured level of treatment). Then Figure 4 shows the biplot based on the
ALAD. It does not give an additive structure of data and is not satisfactory. The results by the ALS is
similar to that by the ALAD. But the biplot by our proposed algorithm is similar to that by the rubber
data with no outliers. It is shown in Figure 5 that gives the information on outlying cells. Figure 5
also implies that the 2nd column is a candidate of outliers. It coincides exactly with the structure of
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Figure 4: The biplot based on the SVD by alternating least absolute deviation for the rubber data

0 10 20 30 40 50

−
30

−
20

−
10

0
10

20

Figure 5: The biplot based on the SVD by alternating weighted least absolute deviation for the rubber data

the contaminated data.
The AWLAD algorithm is more robust than the ALAD algorithm, when in particular the data has

leverage points. Furthermore, through numerical examples we can see that the biplot based on the
AWLAD algorithm gives the outlying information. The AWLAD is a simple algorithm to implement.
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