• 제목/요약/키워드: Weighted Mean Squared Error

검색결과 30건 처리시간 0.02초

Tchebycheff Metric 기반 가중평균제곱오차 최소화법을 활용한 다중반응표면 최적화 (A Weighted Mean Squared Error Approach Based on the Tchebycheff Metric in Multiresponse Optimization)

  • 정인준
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.97-105
    • /
    • 2015
  • 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 최적화하는 입력변수의 조건을 찾는 것을 목적으로 한다. 다중반응표면 최적화를 위해 제안된 가중평균제곱오차(Weighted Mean Squared Error, WMSE) 최소화법은 평균제곱오차의 구성요소인 제곱편차와 분산에 서로 다른 가중치를 부여하는 방법이다. 지금까지 WMSE 최소화법과 관련하여, 개별 반응변수의 WMSE를 구성한 후 이들의 가중합을 최소화하는 가중합 기반 WMSE 최소화법이 제안되었다. 그러나 가중합 기반법은 목적함수 공간에서 볼록하지 않은 구간이 있고 이 구간에서 가장 선호되는 해가 존재할 경우 이 해를 찾아내지 못한다는 한계를 지니고 있다. 본 논문에서는 기존의 가중합 기반법의 한계점을 극복하기 위하여 Tchebycheff Metric 기반 WMSE 최소화법을 제안하고자 한다.

다중반응표면 최적화를 위한 가중평균제곱오차 (A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization)

  • 정인준;조현우
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.625-633
    • /
    • 2013
  • 본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다.

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

쌍대반응표면최적화를 위한 가중평균제곱오차 최소화법: 공정능력지수 기반의 가중치 결정 (Weighted Mean Squared Error Minimization Approach to Dual Response Surface Optimization: A Process Capability Indices-Based Weighting Procedure)

  • 정인준
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.685-700
    • /
    • 2014
  • Purpose: The purpose of this paper is to develop a systematic weighting procedure based on process capability indices method applying weighted mean squared error minimization (WMSE) approach to dual response surface optimization. Methods: The proposed procedure consists of 5 steps. Step 1 is to prepare the alternative vectors. Step 2 is to rank the vectors based on process capability indices in a pairwise manner. Step 3 is to transform the pairwise rankings into the inequalities between the corresponding WMSE values. Step 4 is to obtain the weight value by calculating the inequalities. Or, step 5 is to obtain the weight value by minimizing the total violation amount, in case there is no weight value in step 4. Results: The typical 4 process capability indices, namely, $C_p$, $C_{pk}$, $C_{pm}$, $C_{pmk}$ are utilized for the proposed procedure. Conclusion: The proposed procedure can provide a weight value in WMSE based on the objective quality performance criteria, not on the decision maker's subjective judgments or experiences.

다중반응표면 최적화에서 가중평균제곱오차 최소화법을 위한 선호도사후제시법 (A Posterior Preference Articulation Method to the Weighted Mean Squared Error Minimization Approach in Multi-Response Surface Optimization)

  • 정인준
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.7061-7070
    • /
    • 2015
  • 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여 최적의 입력변수 조건을 찾는 반응표면분석의 세부 분야이다. 가중평균제곱오차(Weighted Mean Squared Error, WMSE) 최소화법은 평균제곱오차의 두 구성 요소인 제곱편차와 분산에 가중치를 부여한 WMSE를 활용하는데, 반응변수별로 WMSE를 구하여 이들을 종합적으로 최소화한다. 지금까지 WMSE 최소화법과 관련하여 개발된 기법은 대부분 의사결정자의 선호도 정보를 문제풀이 이전에 결정할 것을 요구하는 선호도사전제시법에 해당된다. 그러나 현실적으로 의사결정자가 자신의 선호도 정보를 사전에 정확히 제공하는 것은 매우 어렵다. 본 논문에서는 이러한 한계점을 개선하기 위하여 WMSE 최소화를 위한 선호도사후제시법을 제안한다. 제안된 방법은 의사결정자의 선호도 정보 없이 다수의 비지배적해를 생성한 후, 의사결정자가 생성된 비지배해 중 최고선호해를 선택하는 단계로 진행된다. 제안된 방법은 의사결정자로 하여금 전체 해집합의 트레이드오프 관계를 보다 폭넓은 시각으로 이해한 후 선호도 정보를 제시할 수 있도록 함으로써, 의사결정자의 선호도에 부합하는 최고선호해를 효과적으로 도출할 수 있다.

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • 한국조사연구학회:학술대회논문집
    • /
    • 한국조사연구학회 2002년도 추계학술대회 발표논문집
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

가우시안 잡음환경에서 영상복원을 위한 개선된 적응 가중치 필터 (An Improved Adaptive Weighted Filter for Image Restoration in Gaussian Noise Environment)

  • ;황용연;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.623-625
    • /
    • 2012
  • 가우시안 잡음에 의해 훼손된 영상의 복원은 영상처리분야에서 가장 중요한 과제이다. 가우시안 잡음을 제거하기 위해, 가우시안 필터, 평균 필터, 가중치 필터 등 다양한 방법들이 제안되었다. 그러나 기존의 방법들은 잡음제거 및 에지 보존성능이 미흡하다. 따라서 본 논문에서는 효과적으로 잡음을 제거하기 위해, 마스크내의 각 화소들의 공간 거리와 추정된 잡음분산 등을 고려한 적응 가중치 필터를 제안하였다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교하였고, 판단기준으로 MSE(mean squared error)를 사용하였다.

  • PDF

수요 예측 평가를 위한 가중절대누적오차지표의 개발 (A New Metric for Evaluation of Forecasting Methods : Weighted Absolute and Cumulative Forecast Error)

  • 최대일;옥창수
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.159-168
    • /
    • 2015
  • Aggregate Production Planning determines levels of production, human resources, inventory to maximize company's profits and fulfill customer's demands based on demand forecasts. Since performance of aggregate production planning heavily depends on accuracy of given forecasting demands, choosing an accurate forecasting method should be antecedent for achieving a good aggregate production planning. Generally, typical forecasting error metrics such as MSE (Mean Squared Error), MAD (Mean Absolute Deviation), MAPE (Mean Absolute Percentage Error), and CFE (Cumulated Forecast Error) are utilized to choose a proper forecasting method for an aggregate production planning. However, these metrics are designed only to measure a difference between real and forecast demands and they are not able to consider any results such as increasing cost or decreasing profit caused by forecasting error. Consequently, the traditional metrics fail to give enough explanation to select a good forecasting method in aggregate production planning. To overcome this limitation of typical metrics for forecasting method this study suggests a new metric, WACFE (Weighted Absolute and Cumulative Forecast Error), to evaluate forecasting methods. Basically, the WACFE is designed to consider not only forecasting errors but also costs which the errors might cause in for Aggregate Production Planning. The WACFE is a product sum of cumulative forecasting error and weight factors for backorder and inventory costs. We demonstrate the effectiveness of the proposed metric by conducting intensive experiments with demand data sets from M3-competition. Finally, we showed that the WACFE provides a higher correlation with the total cost than other metrics and, consequently, is a better performance in selection of forecasting methods for aggregate production planning.

Admissible Hierarchical Bayes Estimators of a Multivariate Normal Mean Shrinking towards a Regression Surface

  • Cho, Byung-Yup;Choi, Kuey-Chung;Chang, In-Hong
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.205-216
    • /
    • 1996
  • Consider the problem of estimating a multivariate normal mean with an unknown covarience matrix under a weighted sum of squared error losses. We first provide hierarchical Bayes estimators which shrink the usual (maximum liklihood, uniformly minimum variance unbiased) estimator towards a regression surface and then prove the admissibility of these estimators using Blyth's (1951) method.

  • PDF