• Title/Summary/Keyword: Weighted Loss Function

Search Result 52, Processing Time 0.018 seconds

Sufficient Conditions for the Admissibility of Estimators in the Multiparameter Exponential Family

  • Dong, Kyung-Hwa;Kim, Byung-Hwee
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.55-69
    • /
    • 1993
  • Consider the problem of estimating an arbitrary continuous vector function under a weighted quadratic loss in the multiparameter exponential family with the density of the natural form. We first provide, using Blyth's (1951) method, a set of sufficient conditions for the admisibility of (possibly generalized Bayes) estimators and then treat some examples for normal, Poisson, and gamma distributions as applications of the main result.

  • PDF

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.

Study on the Robust Design of an Intake System Using a Frequency Weighting Function (주파수 가중함수를 적용한 흡기계의 강건설계 연구)

  • Lee, J.K.;Park, Y.W.;Chai, J.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.680-686
    • /
    • 2005
  • This paper introduces the robust design of an intake system using transmission loss and the frequency weighting function. First, transmission loss is measured to evaluate the performance of the noise reduction for the intake system. The robust design parameters of the intake system are extracted by adapting a cost function with the Taguchi method. Subsequently, the frequency weighting function is developed by the subjective evaluation in which 6 special engineers were participated. Finally, the comparison between the proposed frequency weighted optimal design and unweighted optimal design for the transmission loss as the part is performed. Here, the overall levels of the transmission loss according to the methods are presented to validate the effectiveness of the proposed methodology.

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

A Modification of the Combined Estimator of Inter- and Intra-Block Estimators under an Arbitrary Convex Loss Function

  • Lee, Young-Jo
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.1
    • /
    • pp.21-25
    • /
    • 1987
  • The combined estimator of inter- and intra-block estimators in incomplete block designs can be expressed as a weighted average of two location estimators. The weight should be between 0 and 1. However, the negative variance component estimate could result in the weight being negative or larger than 1. In this paper, we show that if two location estimators have symmetric unimodal distributions, truncating the weight to 0 or 1 accordingly improves the combined estimator under an arbitrary convex loss function.

  • PDF

A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function (가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측)

  • Kim, HyunJin;Jung, Yeon Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.123-128
    • /
    • 2019
  • This paper proposes the stock price prediction based on the artificial intelligence, where the model with recurrent convolution neural network (RCNN) layers is adopted. In the motivation of this prediction, long short-term memory model (LSTM)-based neural network can make the output of the time series prediction. On the other hand, the convolution neural network provides the data filtering, averaging, and augmentation. By combining the advantages mentioned above, the proposed technique predicts the estimated stock price of next day. In addition, in order to emphasize the recent time series, a custom weighted loss function is adopted. Moreover, stock data related to the stock price index are adopted to consider the market trends. In the experiments, the proposed stock price prediction reduces the test error by 3.19%, which is over other techniques by about 19%.

A Novel Algorithm of Joint Probability Data Association Based on Loss Function

  • Jiao, Hao;Liu, Yunxue;Yu, Hui;Li, Ke;Long, Feiyuan;Cui, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2339-2355
    • /
    • 2021
  • In this paper, a joint probabilistic data association algorithm based on loss function (LJPDA) is proposed so that the computation load and accuracy of the multi-target tracking algorithm can be guaranteed simultaneously. Firstly, data association is divided in to three cases based on the relationship among validation gates and the number of measurements in the overlapping area for validation gates. Also the contribution coefficient is employed for evaluating the contribution of a measurement to a target, and the loss function, which reflects the cost of the new proposed data association algorithm, is defined. Moreover, the equation set of optimal contribution coefficient is given by minimizing the loss function, and the optimal contribution coefficient can be attained by using the Newton-Raphson method. In this way, the weighted value of each target can be achieved, and the data association among measurements and tracks can be realized. Finally, we compare performances of LJPDA proposed and joint probabilistic data association (JPDA) algorithm via numerical simulations, and much attention is paid on real-time performance and estimation error. Theoretical analysis and experimental results reveal that the LJPDA algorithm proposed exhibits small estimation error and low computation complexity.

Variable selection in censored kernel regression

  • Choi, Kook-Lyeol;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.201-209
    • /
    • 2013
  • For censored regression, it is often the case that some input variables are not important, while some input variables are more important than others. We propose a novel algorithm for selecting such important input variables for censored kernel regression, which is based on the penalized regression with the weighted quadratic loss function for the censored data, where the weight is computed from the empirical survival function of the censoring variable. We employ the weighted version of ANOVA decomposition kernels to choose optimal subset of important input variables. Experimental results are then presented which indicate the performance of the proposed variable selection method.

Application of YOLOv5 Neural Network Based on Improved Attention Mechanism in Recognition of Thangka Image Defects

  • Fan, Yao;Li, Yubo;Shi, Yingnan;Wang, Shuaishuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.245-265
    • /
    • 2022
  • In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.

Dynamically weighted loss based domain adversarial training for children's speech recognition (어린이 음성인식을 위한 동적 가중 손실 기반 도메인 적대적 훈련)

  • Seunghee, Ma
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.647-654
    • /
    • 2022
  • Although the fields in which is utilized children's speech recognition is on the rise, the lack of quality data is an obstacle to improving children's speech recognition performance. This paper proposes a new method for improving children's speech recognition performance by additionally using adult speech data. The proposed method is a transformer based domain adversarial training using dynamically weighted loss to effectively address the data imbalance gap between age that grows as the amount of adult training data increases. Specifically, the degree of class imbalance in the mini-batch during training was quantified, and the loss function was defined and used so that the smaller the data, the greater the weight. Experiments validate the utility of proposed domain adversarial training following asymmetry between adults and children training data. Experiments show that the proposed method has higher children's speech recognition performance than traditional domain adversarial training method under all conditions in which asymmetry between age occurs in the training data.