• Title/Summary/Keyword: Weight minimization

Search Result 175, Processing Time 0.025 seconds

Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization) (퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화))

  • Lee, Yeong-U;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

Development of Durability Estimation and Design Systems of Worm Gears (웜기어의 강도평가 및 설계시스템 개발에 관한 연구)

  • 정태형;백재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

Comparison on of Minimization of Loos function for strength Prediction Model using DNN (DNN을 활용한 강도예측모델의 손실함수 최소화 기법 비교분석)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.182-183
    • /
    • 2022
  • In this study, compared and analyzed various loss function minimization techniques to present a methodology for developing a natural intelligence-based prediction system. As a result of the analysis, He Initialization was the best with RMSE: 3.78, R2: 0.94, and the error rate was 6%. However, it is considered desirable to construct a prediction system by combining each technique for optimization.

  • PDF

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

A Study on Optimum Structural Design of the Corrugated Bulkhead Considering Stools (상하부 스툴을 고려한 파형 격벽 최적 설계에 관한 연구)

  • 신상훈;남성길
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.53-58
    • /
    • 2003
  • Design of the corrugated watertight bulkhead for a bulk carrier is principally determined by the permissible limit of Classification requirements. As the weight of upper and lower stool has considerable portion of the total weight of the transverse bulkhead, optimum design including the stool geometry and size will play an important role on economic shipbuilding. The purpose of this study is focused on the minimization of steel weight using the design variables, which are the shape and the size of the corrugation as well as the upper and lower stools. Discrete variables are used as design variables for the practical design. In this study, the evolution strategies (ES), which can highly improve the possibility of leaching the global minimum point, are selected as an optimization method. Usefulness of this study is verified by comparison with the proven type ship design. As objective function, total weight of the transverse bulkhead including the upper and lower stools is used.

Minimum Weight Design for Bridge Girder using Approximation based Optimization Method

  • ;Yearn-Tzuo(Andrew);Gar
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.31-39
    • /
    • 1995
  • Weight minimization for the steel bridge girders using an approximation based optimization technique is presented. To accomplish this, an optimization oriented finite element program is used to achieve continuous weight reduction until the optimum is reached. To reduce computational cost, approximation techniques are adopted during the optimization process. Constraint deletion as well as intermediate design variables and responses are also used for higher qualitv of approximations and for a better convergence rate. Both the reliability and the effectiveness of the underlying optimization method are reviewed.

  • PDF

Heavy-Weight Component First Placement Algorithm for Minimizing Assembly Time of Printed Circuit Board Component Placement Machine

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2016
  • This paper deals with the PCB assembly time minimization problem that the PAP (pick-and-placement) machine pickup the K-weighted group of N-components, loading, and place into the PCB placement location. This problem considers the rotational turret velocity according to component weight group and moving velocity of distance in two component placement locations in PCB. This paper suggest heavy-weight component group first pick-and-place strategy that the feeder sequence fit to the placement location Hamiltonean cycle sequence. This algorithm applies the quadratic assignment problem (QAP) that considers feeder sequence and location sequence, and the linear assignment problem (LAP) that considers only feeder sequence. The proposed algorithm shorten the assembly time than iATMA for QAP, and same result as iATMA that shorten the assembly time than ATMA.

High Molecular Weight Conjugated Polymer Thin Films with Enhanced Molecular Ordering, Obtained via a Dipping Method

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3340-3344
    • /
    • 2013
  • The fabrication of polymer field-effect transistors with good electrical properties requires the minimization of molecular defects caused by low molecular weight (MW) fractions of a conjugated polymer. Here we report that the electrical properties of a narrow bandgap conjugated polymer could be dramatically improved as a result of dipping a thin film into a poor solvent. The dipping time in hexanes was controlled to efficiently eliminate the low molecular weight fractions and concomitantly improve the molecular ordering of the conjugated polymer. The correlation between the structural order and the electrical properties was used to optimize the dipping time and investigate the effects of the low MW fraction on the electrical properties of the resulting thin film.

Reliability-Based Structural Optimization of Transmission Tower (신뢰성에 기초한 철탑구조물의 최적화에 관한 연구)

  • 김성호;김상효;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF

Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm

  • Rahman, Md. Moshiur;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • This paper presents a generalized formulation for optimizing the design of concrete beam reinforced with glass fiber reinforced polymer bar. The optimization method is formulated to find the design variables leading to the minimum weight of concrete beam with constraints imposed based on ACI code provisions. A simple genetic algorithm is utilized to solve the optimization task. The weights of concrete and glass fiber reinforced polymer bar are included in the formulation of the objective function. The ultimate limit states and the serviceability limit states are included in formulation of constraints. The results of illustrated example demonstrate the efficiency of the proposed method to reduce the weight of beam as well as to satisfy the above requirement. The application of the optimization based on the most economical design concept have led to significant savings in the amount of the component materials to be used in comparison to classical design solutions.