Park, Juyeon;Park, Mingyu;Han, Sora;Kim, Jeongdong;Oh, Taejin;Lee, Hyun
International Journal of Advanced Culture Technology
/
제10권2호
/
pp.201-212
/
2022
With the development of sequencing technology, there is a need for technology to predict the function of the protein sequence. Enzyme Commission (EC) numbers are becoming markers that distinguish the function of the sequence. In particular, many researchers are researching various methods of predicting the EC numbers of protein sequences based on deep learning. However, as studies using various methods exist, a problem arises, in which the exact prediction result of the sequence is unknown. To solve this problem, this paper proposes an All Enzyme Commission (AEC) algorithm. The proposed AEC is an algorithm that executes various prediction methods and integrates the results when predicting sequences. This algorithm uses duplicates to give more weights when duplicate values are obtained from multiple methods. The largest value, among the final prediction result values for each method to which the weight is applied, is the final prediction result. Moreover, for the convenience of researchers, the proposed algorithm is provided through the AllEC web services. They can use the algorithms regardless of the operating systems, installation, or operating environment.
In the present study, the variation of settlement, pore water pressure and undrained shear strength through model tests were measured. Also, the variation of water content, unit weight and shear strength by the vane shear tests were observed. In this study, appropriate deposit time of construction equipments used in treatment of hydraulic fills is determined from the prediction curve of increased shear strength in dredged fills.
Accurate weight prediction methods are an essential of the ship design in both ship cost managements and performance satisfactions. When no parent or similar ships are available, an adequate method of the ship weight estimating is required. In this study, there was carried out to develop the ship weight estimating method for the preliminary design phase. The weight estimating methods were first surveyed by the references and summarized their characteristics. The weight estimation method by statistical approach was developed for the container ship because the containerized transportation markets is gradually growing and ship's size and loading capacity are rapidly enlarged. The correlation analysis and the multiple regression analysis were used for developing the weight estimating method. As a results of evaluating the developed method, the error ratio of the variation between estimated weight and ship's data was about 5%. And it was only 1% difference with the calculating weight of conceptual design results by shipyard design team that the estimating weight of ultra-large container ship was predicted by the developed method.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.319-328
/
2021
Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.
본 논문은 광혈류신호를 이용하여 혈압을 예측하는 방법을 제시한다. 제시한 방법은 먼저, 광혈류신호를 측정한 후, 전처리 과정을 통해 아티펙트를 제거하고 학습을 위한 신호를 얻는다. 그리고 혈압에 영향을 주는 몸무게와 키를 부가 정보로 측정한다. 다음으로, 인공지능 알고리즘을 통해 광혈류신호, 키, 그리고 몸무게를 입력변수로 학습하여 수축기와 이완기 혈압을 추정하도록 시스템을 구축한다. 구축된 시스템은 사전에 입력된 키와, 몸무게, 그리고 측정한 광혈류신호를 가지고 수축기와 이완기 혈압을 예측한다. 제안한 방법은 무구속 방식으로 피검자의 키와 몸무게, 그리고 심장 및 혈관의 상태를 반영하는 광혈류신호를 입력받아 실시간, 연속적으로 혈압 예측이 가능하다. 본 연구에서 제시한 인공지능 기반 혈압예측시스템의 유용성을 확인하기 위해 측정한 혈압과 예측한 혈압의 비교를 통해 결과의 유용성을 확인한다.
The yield is basic and necessary information in precision agriculture that reduces input resources and enhances productivity. Yield information is important because it can be used to set up farming plans and evaluate farming results. Yield monitoring systems are commercialized in the United States and Japan but not in Korea. Therefore, such a system must be developed. This study was conducted to develop a yield monitoring system that improved performance by correcting a previously developed flow sensor using a grain tank-weighing system. An impact-plated type flow sensor was installed in a grain tank where grains are placed, and grain tank-weighing sensors were installed under the grain tank to estimate the weight of the grain inside the tank. The grain flow rate and grain weight prediction models showed high correlations, with coefficient of determinations (R2) of 0.9979 and 0.9991, respectively. A main controller of the yield monitoring system that calculated the real-time yield using a sensor output value was also developed and installed in a combine harvester. Field tests of the combine harvester yield monitoring system were conducted in a rice paddy field. The developed yield monitoring system showed high accuracy with an error of 0.13%. Therefore, the newly developed yield monitoring system can be used to predict grain weight with high accuracy.
본 연구는 영상데이터와 환경데이터를 활용하여 배추의 생육을 예측할 수 있는 모형을 개발하기 위하여 수행되었다. 강원도 평창군에 소재한 시험포에 '청명가을' 배추를 7월 11일, 7월 19일, 7월 27일 3차례 정식하여 9월 12일까지 생육, 영상, 환경데이터를 수집하였다. 배추 생육예측 모형에 활용할 핵심인자를 선발하기 위하여 수집한 생육데이터와 기상데이터를 활용해 요소간 상관분석을 수행한 결과 생체중과 GDD, 생체중과 누적일사량의 상관계수가 0.88로 높은 상관계수를 보였으며, 생체중과 초장, 생체중과 피복면적이 각각0.78, 0.79로 유의미한 상관 관계를 보였다. 높은 상관관계를 보인 요소들 중에서 선행문헌을 참고하여 모형개발에 활용할 핵심요소로 영상에서는 피복면적을 환경데이터에서는 생육도일(GDD)을 선정하였다. GDD, 피복면적, 생육데이터를 조합하여 배추의 생체중, 엽수, 엽면적 예측 모형을 개발하였다. 단 요인 모형으로 2차함수, 시그모이드, 로지스틱 모형을 제작하였으며 평가 결과 시그모이드 형태의 예측 모형이 가장 설명력이 좋았다. GDD와 피복면적을 조합한 다요인 생육예측 모형을 개발한 결과 생체중, 엽수, 엽면적의 결정계수가 0.9, 0.95, 0.89으로 단요인 예측모형보다 예측정확도가 개선된것을 확인할 수 있었다. 개발한 모형을 검증하기 위하여 검증시험포의 조사결과로 검증한 결과 관측 값과 예측 값의 결정계수는 0.91이며 RMSE가 134.2g으로 높은 예측 정확도를 보였다. 기존의 생육 관측의 경우 기상데이터로만 예측을 하거나 영상데이터로만 예측하는 경우가 많았는데 이는 현장의 상태를 반영하지 못하거나 배추가 결구 되는 특성을 반영하지 못해 예측 정확도가 낮았다. 두 예측방법을 혼합해 각 관측방법의 약점을 보완해 줌으로써 대한민국에서 수행되고 있는 기간채소 작황예측의 정확도를 높일 수 있을 것으로 기대된다.
This study suggests the Link weight analysis approach to choose input variables and an integrated model to make more accurate bankruptcy prediction model. the Link weight analysis approach is a method to choose input variables to analyze each input node's link weight which is the absolute value of link weight between an input nodes and a hidden layer. There are the weak-linked neurons elimination method, the strong-linked neurons selection method in the link weight analysis approach. The Integrated Model is a combined type adapting Bagging method that uses the average value of the four models, the optimal weak-linked-neurons elimination method, optimal strong-linked neurons selection method, decision-making tree model, and MDA. As a result, the methods suggested in this study - the optimal strong-linked neurons selection method, the optimal weak-linked neurons elimination method, and the integrated model - show much higher accuracy than MDA and decision making tree model. Especially the integrated model shows much higher accuracy than MDA and decision making tree model and shows slightly higher accuracy than the optimal weak-linked neurons elimination method and the optimal strong-linked neurons selection method.
In this paper, a theoretical approach is studied to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.
This study was been conducted to determine chemical characteristics of soils in the major districts cultivating flue-cured tobacco plant. Also native soil productivities were measured by means of bioassay planting tobacco plant without fertilizer at 87 selected lolls through pot and field experiments. Inorganic nutrient in soils affecting the dry weight of tobacco leaves cultivated in the field were investigated. The results obtained are summarized as follows; 1. Among soil chemical characteristics, pH, $NO_3$-N, $NH_4$-N , $P_2O_5$, and Mg Influenced significantly the dry weight of tobacco loaves In pot experiment, whole In the field experiments, pH, $NO_3$-N, $NO_3$-N+$NH_4$-N, and Ca had influence. 2. Correlation coefficients between soil chemical characteristics and dry weight of tobacco leaves were higher in pot experiment than field. The results revealed that soil morphological characteristics might more close influence on dry weight of tobacco leaves than chemical characteristics. 3. For prediction of dry weight (Productivity) of tobacco leaves without fertilizer multiple regression analysis were introduced using troll chemical characteristics. A combination of pH, $NO_3$-N, and Ca was very reliable for prediction of productivity as equation. y=5.02+18.07$x_1$ +2.61$x_2$ +5.36$x_3$ R=0.444** Where $x_1$ : pH, $x_2$ : $NO_3$-N, $x_3$:Ca
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.