• 제목/요약/키워드: Weight Method

검색결과 9,500건 처리시간 0.04초

수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정 (Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method)

  • 이강용;김종성
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

고파랑이 내습하는 방조제 피복석의 안정성 평가 - 새만금방조제를 중심으로 - (Stability Evaluation of Armor Stones in the Seadike of Incoming High Waves - Focused on Saemangeum Seadike -)

  • 손재권;고남영;김덕구;박설화
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.47-55
    • /
    • 2016
  • This study is on the stability re-evaluation of armor stones in saemangum seadike according to recently increased sea-level and frequent high wave incoming and the results are in the following. The field inspection of armor stones in the seadike revealed that damages of armor stones have been caused by higher waves than designed waves and that the reconstruction of armor stones and concrete grouting method have been used as the reinforcement work. The result of numerical simulation of wave channel conducted to estimate the safety weight of armor stones influenced by flows revealed that the safety weight of armor stones in the seadike No.4 was estimated as 5.47 tons by using the Isbash method, which is about 122 % more than 4.49 tons estimated by using Van der Meer method. Therefore, in designing armor stones which can be influenced by high waves such as the case of Saemangum seadike, it is necessary to apply the safety weight method of armor stones, based on the Isbash method, which produced the significant figures among the safety weight methods using flows as well as the safety weight method using high waves based on the Hudson method.

해석기법에 따른 사변형망의 정확도해석에 관한 연구 (A study on the Accuracy Analysis of Quadrilateral Nets by Analytical Methods)

  • 강준묵;이진덕;한승희;이용창
    • 한국측량학회지
    • /
    • 제6권1호
    • /
    • pp.3-12
    • /
    • 1988
  • 본 연구는 최소자유법를 기초로 각과 거이 관측요소를 조합시켜 동시 조정하는 결합조정방법의 해석이론을 정립하고 이를 삼각측량 삼변측량 독립 조정방법과 비교하여 그의 특성을 고찰하는데 목적이 있다. 각과 거이의 표준오차를 감소시킴에 따라, 오차분포의 비율은 삼각측량, 삼변측량 방법이 각각 39.8%, 33.9% 정도의 오차를 나타낸 반면, 조합조정(combination adjustment) 방법은 26.3%로, 낮은 비율로 나타나므로 조합기법이 보다 우월함을 알 수 있었다. 측정요소의 표준오차를 독립적으로 각각 고찰한 경우, 기하학적 표준오차의 감소율은 각 방법이 다양한 변화를 타나내었으나, 동시에 고찰한 경우는 삼각측량 75.5%, 삼변측량 74.1%, 종합기법 69.2%의 감소율을 나타내었다. Weight Factor를 증가시킴에 따라, 삼각측량 기법은 정도가 향상되었으나, 삼변측량 기법은 감소되므로, 균형 있는 Weight Factor의 결정은 중요한 의미를 가지며 이상적인 Weight Factor를 결정한다면, combination 해석기법은 보다 정확한 해석방법으로 그 활용이 기대된다.

  • PDF

Minimum Weight Design for Bridge Girder using Approximation based Optimization Method

  • 김종옥
    • 한국농공학회지
    • /
    • 제37권E호
    • /
    • pp.31-39
    • /
    • 1995
  • Weight minimization for the steel bridge girders using an approximation based optimization technique is presented. To accomplish this, an optimization oriented finite element program is used to achieve continuous weight reduction until the optimum is reached. To reduce computational cost, approximation techniques are adopted during the optimization process. Constraint deletion as well as intermediate design variables and responses are also used for higher qualitv of approximations and for a better convergence rate. Both the reliability and the effectiveness of the underlying optimization method are reviewed.

  • PDF

AHP기법을 이용한 방수공법 선정 평가항목의 가중치 결정에 관한 연구 (A Research for Weight Decision of Waterproofing Methods Selection Evaluation Item using the AHP)

  • 최성민;임종권;오상근;서치호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.205-211
    • /
    • 2008
  • Recently, selects method of waterproofing where is suitable with method and material physical properties, construction technique, Productive technique and specifications and maintenance techniques evaluation for the same evaluation method is coming to be presented. Respects the application which select system is substantial objectively reflects a weight to evaluation item the research for is necessary. This research the evaluation which in order is effective and the decision-making to be possible about technically countermeasures for a quality security from waterproofing materials, method selection processes, clearly responsible dividing of construction and maintenance techniques. A sets weight of evaluation item for right select system, it stratify the causes which affect in priority based on AHP.

  • PDF

기계적 체결홀에 존재하는 타원호형 관통균열에 대한 가중함수법의 적용 (Application of Weight Function Method to Elliptical Arc Through Cracks at Mechanical Fastener Holes)

  • 허성필;양원호;정기현;현철승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.304-310
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. In this study mode I, II and III stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by applying weight function method. The weight function method for two dimensional mixed-mode problem is extended to three dimensional one and it is verified.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • 허성필;양원호;정기현
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

엔진 블록의 중량 최소화에 관한 연구 (A Study on the Weight Minimization of an Engine Block)

  • 오창근;박석주;박영범
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.182-190
    • /
    • 1997
  • Recently to develope an automobile with better properties, much researches and investments are executed in many countries. In this paper, it is intended to minimize the weight of an engine block without changing the dynamic characteristics. The weight minimization is executed by the sensitivity of the natural frequency of the engine block. To decrease the engine weight, much less thickness than the original thickness of the engine is selected to initial value and the structure modification is performed to recover the dynamic characteristics of the engine. Here, the original thickness of the engine is 8mm and the initial thickness is selected to 5mm, 6mm and the number if the natural frequencies fitted are 2, 6, 7, respectively. As the results, it is found that; (1) the weight of each case could be reduced without changing the objective natural frequencies. Specially, in the case of fitting 2 natural frequencies with 5mm initial thickness the weight could be reduced to 4.21kg(23.3% for engine weight). (2) according to the driving frequency range of engine, the weight minimization could be performed choicely, (3) improving a vibration characteristics of a orignal structure, the weight minimization could be performed.

  • PDF

Statistical models from weigh-in-motion data

  • Chan, Tommy H.T.;Miao, T.J.;Ashebo, Demeke B.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.85-110
    • /
    • 2005
  • This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kolmogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.