• Title/Summary/Keyword: Weight Measurement

Search Result 1,918, Processing Time 0.035 seconds

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

The Study of Body Types of Adult Women in Korea (한국 20대 성인여성의 체형 연구)

  • 손희순;손희정
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.141-152
    • /
    • 1998
  • In the result of classification body types for 100 adult women by direct measurements and antropometric measurements, the mean of weight is bigger than he mean of weight of 97'. So modern 20's women is more than than 94'. In the result of factor analysis, 5 factors were extracted (horizontal sizes, vertical sizes, and degree of shoulder) from exponent sizes of the antropometric measurements item, and another 5 factors were extracted (thick of body, horizontal form of the torso, silhouette of the torso, and size of abdomen) from direct measurements item. The body types are classified into 4 types by cluster analysis in the result of direct measurement item, and another body types are classified into 5 types by antropometric measurement item, it was classified into the horizontal size and the shape and silhouette of torso, and by direct measurement item, it was only classified into the vertical and horizontal size. So for the patternmaking of clothing, it is more adoptable the classification of body by antropometric measurement item than direct measurement item.

  • PDF

Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method (현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험)

  • Shin, Hoon;Back, Geon-Jong;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.581-586
    • /
    • 2008
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of 31.5Hz - 500Hz is more correspondent to psycho-acoustic response than that of measurement frequency of 63Hz - 500Hz which is for KS F 2863-2, existing rating method.

  • PDF

Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method (현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험)

  • Shin, Hoon;Kim, Sun-Woo;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of $31.5\;Hz{\sim}500\;Hz$ is more correspondent to psycho-acoustic response than that of measurement frequency of $63\;Hz{\sim}500\;Hz$ which is for KS F 2863-2, existing rating method.

Relation between Weight Bearing Ratio in the Standing Posture Immediately after Performing Standing Task and Balance and Functional Ambulation in Stroke Patients

  • Hwang, Da-Gyeom;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.320-324
    • /
    • 2015
  • Purpose: The purpose of this study was to provide methods for assessment of functional balance through study of correlation with the weight bearing ratio, functional balance, and functional gait on patients with stroke. Methods: Thirty-nine patients with stroke participated in this study. The timed up and go test was used to measure balance and the functional ambulation category test to measure functional gait. Weight bearing was measured in the quiet standing posture and weight bearing in the quiet standing posture immediately after performing the standing-task. Results: Both timed up and go test and functional ambulation category test showed significant correlation with balance in the quiet standing posture immediately after performing the standing task. Conclusion: Measurement of balance in the quiet standing posture immediately after performing the standing-task was considered a meaningful scale for measurement of both balance function and gait function of patients with stroke.

A Study on Measurement Time Reduction for Multi-Channel Combination Scale (다채널 조합형 계량기의 안정화 성능 개선에 관한 연구)

  • Lee, Hyeong-Ill;Ban, Kap-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2016
  • The performance of a multi-head, computerized combination scaling system to automatically identify a group of agricultural products having a total weight within the target range has been optimized to reduce the package cycle time of the merchandise. First, the structure of the scale was modified to enable faster measurement by enhancing the dynamic stability during the process. Second, the high frequency noise in the measured signal was eliminated by a high frequency filter to provide more accurate weight data. Finally, the algorithm to identify a group of products with a total weight within the target range was modified to enable a user to select an optimal number of scales. According to the experimental verifications, this modified system reduced the package cycle time significantly and also was accurate in measuring the total weight of the selected products.

A Comparative Analysis of Capacity and Weight in Elementary Mathematics Textbooks of Korea, Japan, Singapore, and the US (한국, 일본, 싱가포르, 미국의 초등학교 수학 교과서에 제시된 들이와 무게 지도 방안에 대한 비교·분석)

  • Pang, JeongSuk;Kwon, MiSun;Kim, MinJeong;Choi, InYoung;SunWoo, Jin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.627-654
    • /
    • 2016
  • Despite the significance of the measurement strand in elementary mathematics education, it is not easy to teach it meaningfully. This study analyzed instructional methods related to capacity and weight in a series of mathematics textbooks of Korea, Japan, Singapore, and the US. The overall analysis was conducted in the following two aspects: (a) what and when to teach main learning content, and (b) how to teach the learning content tailored to the instructional components specific to the topics of measurement (i.e., the necessity of measurement unit, the meanings of measurement terms, appropriate choice of units, appropriate choice of measurement tools, and the necessity of calculation). The results of this study showed overall similarities in using real-life contexts to teach major topics on capacity and weight as well as emphasizing the relations among measurement units. However, noticeable differences were also analyzed in dealing with the meanings of measurement terms, appropriate choice of units, and appropriate choice of measurement tools. Based on these results, this study provides textbook writers with implications on what to further consider in dealing with capacity and weight.

Implementation of a Body Weight Distribution Measurement System Applicable to Static Bicycle Fitting (정적 자전거 피팅에 적용 가능한 체중 분포 측정장치의 구현)

  • Yoon, Seon-ho;Kwon, Jun-hyuk;Kim, Cheong-worl
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.242-248
    • /
    • 2018
  • Bicycle fittings have been used to ride bicycles comfortably while minimizing non-traumatic injuries. To analyze the cause of non-traumatic injuries, it is necessary to measure the body weight distribution in various biking positions. In this study, a weight distribution measurement system was implemented by installing five weighable devices on the saddle, both pedals, and both handle grips of a bicycle. To measure the body weight applied through the saddle, the structure of a commercial seat post was modified and a load cell was installed inside. Weighable pedals and handle grips were designed using a 3D modeling program and fabricated by employing a 3D printer. The body weight distribution for ten bicycle riders was measured when the two pedals were aligned horizontally and vertically. Experimental results showed that the body weight distribution varied significantly depending on human body shape, even after the bicycle fitting was completed. The difference between the body weight measured by the proposed system and a commercial scale was less than 3 %.

Development and Evaluation of High Speed weigh-in-motion system (고속축하중측정시스템의 개발과 평가)

  • Kim, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Maintenance of the roads and bridges is a major issue for all road administrators around the world, and various initiatives are being implemented in each region for the purpose of controlling the ever increasing road maintenance cost while ensuring the safety of the vehicles driving. Efforts for such initiatives have also been made in Asia and initiatives for managing heavy-weight vehicles have recently gained momentum in Korea and Japan. We have developed a technology for unevenly installing bar-shaped sensors (piezo quartz sensors) to enable dynamic axle load measurement at a highly accurate level, and have estimated our measurement accuracy of axle load/gross weight, etc. on an actual road. The measurement accuracy of the axle load/gross weight varies significantly depending on the number of sensors installed. In our implementation, the target accuracy was set to below ${\pm}5%$ for gross weight measurement so that automatic regulation can be applied. We have achieved our target by installing 8-point measurement system. However, to have this technology widely accepted, it was necessary to reduce the system size so that it can be easily implemented. Therefore, we have estimated the relationship between the measurement accuracy and the system size (number of measurement points), and have come up with the proposal of 3-point measurement as an optimum number of measurement points, and have estimated its performance on an actual road. Additionally, we evaluated the relationship between the measurement accuracy and vehicle velocity.

A Study on How Height and Weight Affects Glomerular Filtration Rate (신장과 체중의 변화가 사구체 여과율에 미치는 영향)

  • Park, A Rang;Choi, Jong Sook;Lee, Young Hee;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Purpose Glomerular filtration rate (GFR) is an important index for evaluation of renal function, renal disease diagnosis and progress monitoring. Therefore, accurate measurement of GFR is clinically important. Among the factors that affect the GFR result, there have been many discussions on the methods such as the correction of the kidney depth, net syringe count, and the method of setting the ROI. However there has been no consideration of counting in the most basic factors like height and weight measurement. In this study, we investigate how height and weight changes affects the result of GFR and review the importance of standardized body measurements. Materials and Methods Fifty patients who underwent GFR test were randomly sampled and examined for changes in height and body weight within one month. From the normal patients without renal disease to the patients with severely decreased GFR, we applied the GFR formula of Gate with varying height and weight. Results: The result showed variation of the height at maximum three centimeters and six kilograms of weight. The first calculation of GFR was done with fixed height value and control variable as weight. Weight was incremented by one kilogram each time up to six kilograms. The GFR showed increased result with increasing weight. The result of GFR showed ten percent increase with six kilograms of weight increase. On the other hand, when height value was incremented by one centimeter up to three centimeters showed decreased GFR result with fixed weight value. Up to three centimeters of height increase showed two percent of decreased GFR with fixed weight. Conclusion This study showed varying GFR result when height and weight changes. Therefore it is clinically crucial not only to maintain and manage body measuring instrument but also to have a standardized measurement methods to derive accurate measured values and to achieve reproducibility.