• Title/Summary/Keyword: Weibull Reliability Analysis

Search Result 204, Processing Time 0.031 seconds

Reliability Analysis of Mechanical Component with Multiple Failure Modes (다수의 고장모드를 가지는 기계부품의 신뢰성 분석)

  • Chang, Mu Seong;Choi, Byung Oh;Kang, Bo Sik;Park, Jong Won;Lee, Choong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1169-1174
    • /
    • 2013
  • Most products are indeed governed by multiple failure modes. However, there are few cases in which reliability analysis applies to only one failure mode at a time. Furthermore, reliability data do not include information about failure modes, or the reliability analysis is performed using a representative failure mode. The Weibull shape parameter for failure modes is more important than one for products in the reliability qualification test. This paper presents reliability analysis methods for a mechanical component with multiple failure modes. These methods include the competing failure modes (CFM) method and the mixed Weibull method. Pneumatic cylinder test data with three failure modes are presented to estimate the shape parameter for each separate failure mode. In addition, reliability measures (B10 life, characteristic life) of the pneumatic cylinder considering three failure modes were compared with those assuming a single failure mode.

Reliability Analysis and Fatigue Models of Concrete under Flexural or Split Tensional Cyclic Loadings (휨 또는 쪼갬인장 반복하중을 받는 콘크리트의 신뢰성 해석과 피로모델 제안)

  • Kim Dong-Ho;Sim Do-Sik;Kim Sung-Hwan;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.581-589
    • /
    • 2004
  • This paper compares the fatigue behaviors of concretes subjected to flexural and split-tensional loadings, and proposes the fatigue reliability models based on experimental results and reliability analysis. The fatigue tests were performed for the specimens of $150 mm{\times}75 mm$ split tensional cylinders and $150 mm{\times}150 mm{\times}550 mm$ flexural beams under constant loadings at three levels (70, 80 and $90\%$) with 0.1 stress ratio, 20 Hz loading speed and sine wave. The reliability analysis on fatigue data was based on Weibull distribution of two-parameters. From fatigue test results, two criteria were proposed to reject the experimental fatigue data because of statistical variation of concrete fatigue data. Two parameters ($\alpha$and u) of Weibull distribution were obtained using graphical method, moment method and maximum likelihood method. The probability density function(P.D.F) and cumulative distribution function(C.D.F) of the Weibull distribution for fatigue life of pavement concrete were derived for various stress levels using parameters, $\alpha$ and u. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable at $5\%$ level of significance. Based on reliability analysis, a fatigue model for pavement concrete was proposed and compared from existing models.

Evaluation of flexural properties and reliability with photo-curing 3D printing resin according to the printing orientations (광경화성 3D 프린팅 레진의 출력각도에 따른 굽힘 특성과 신뢰성 평가)

  • Im, Yong-Woon;Song, Doo-Bin;Hwang, Seong-Sig;Kim, Sa-Hak;Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • Purpose: This study aimed to compare the flexural properties and perform the Weibull analysis of photo-curing three-dimensional (3D) printing resin. Methods: Photo-curing temporary resin (3D polymer) was used as a printing resin. Specimens (65 × 10 × 3.3 ㎣) were prepared following the ISO 20975-1 guidelines and according to the different printing orientations using a digital light processing 3D printer (D2 120; Dentium). The flexural strength (FS), flexural modulus, and work of fracture (WOF) were measured using a universal testing machine (Instron 3344; Instron) at a crosshead speed of 5 mm/min. Results: In this study, the 0° orientation exhibited higher FS and WOF than the 45° orientation. Significant differences were found among the printing orientations (p<0.05). Specimens printed at the 0° orientation were the most accurate. In the Weibull analysis, 0° showed the greatest Weibull modulus (m), which represents a higher reliability. Conclusion: 3D printing should be selected and used by considering flexural properties, size accuracy, and reliability.

A Method for Reliability Analysis of Process Facilities under Changing Operating Conditions (운전조건이 변화하는 공정설비의 신뢰도 분석기법)

  • Choi Soo Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.20-23
    • /
    • 2003
  • The analysis of reliabilities of process facilities often uses models based on the Weibull distribution. The parameters in these models are functions of operating conditions, and determined by experiments. Using these values, we calculate the reliability, mean time to failure, and standard deviation. The conventional method assumes that the operating condition is constant, and thus treats the model parameters as constants. In this paper, a reliability function is proposed which is applicable when the scale parameter is a function of time, and an analysis method based on this is also presented. A case study on a cooling fan resulted in a big difference from the conventional method to which the average operating conditions were applied. The proposed method is also applicable to other process facilities, and expected to effectively take into account the effects of changes in the operating conditions on the reliabilities of the facilities.

  • PDF

Influence Analysis of Sampling Points on Accuracy of Storage Reliability Estimation for One-shot Systems (원샷 시스템의 저장 신뢰성 추정 정확성에 대한 샘플링 시점의 영향 분석)

  • Chung, Yong H.;Oh, Bong S.;Lee, Hong C.;Park, Hee N.;Jang, Joong S.;Park, Sang C.
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.32-40
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the effect of sampling points on accuracy of storage reliability estimation for one-shot systems by assuming a weibull distribution as a storage reliability distribution. Also propose method for determining of sampling points for increase the accuracy of reliability estimation. Methods: Weibull distribution was divided into three sections for confirming the possible to estimate the parameters of the weibull distribution only some section's sample. Generate quantal response data for failure data. And performed parameter estimation with quantal response data. Results: If reduce sample point interval of 1 section, increase the accuracy of reliability estimation although sampling only section 1. Even reduce total number of sampling point, reducing sampling time interval of the 1 zone improve the accuracy of reliability estimation. Conclusion: Method to increase the accuracy of reliability estimation is increasing number of sampling and the sampling points. But apply this method to One-shot system is difficult because test cost of one-shot system is expensive. So propose method of accuracy of storage reliability estimation of one-shot system by adjustment of the sampling point. And by dividing the section it could reduce the total sampling point.

Reliability Analysis for Power Plants Based on Insufficient Failure Data (불충분한 고장 데이터에 기초한 발전소의 신뢰도 산정기법에 관한 연구)

  • 이승철;최동수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.401-406
    • /
    • 2003
  • Electric power industries in several countries are currently undergoing major changes, mainly represented by the privatizations of the power plants and distribution systems. Reliable operations of the power plants directly contribute to the revenue increases of the generation companies in such competitive environments. Strategic optimizations should be performed between the levels of the reliabilities to be maintained and the various preventive maintenance costs, which require the accurate estimations of the power plant reliabilities. However, accurate estimations of the power plant reliabilities are often limited by the lack of accurate power plant failure data. A power plant is not supposed to be failed that often. And if it fails, its impact upon the power system stability is quite substantial in most cases, setting aside the significant revenue losses and lowered company images. Reliability assessment is also important for Independent System Operators(ISO) or Market Operators to properly assess the level of needed compensations for the installed capacity based on the availability of the generation plants. In this paper, we present a power plant reliability estimation technique that can be applied when the failure data is insufficient. Median rank and Weibull distribution are used to accommodate such insufficiency. The Median rank is utilized to derive the cumulative failure probability for each ordered failure. The Weibull distribution is used because of its flexibility of accommodating several different distribution types based on the shape parameter values. The proposed method is applied to small size failure data and its application potential is demonstrated.

A Study on Reliability Data Analysis for Components of Machining Center (공작기계 부품의 신뢰성 데이터 해석에 관한 연구)

  • 이수훈;김종수;송준엽;이승우;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.88-91
    • /
    • 2001
  • The reliability data analysis for components of CNC machining center is studied in this paper. The failure data of mechanical part is analyzed by Exponetial, Weibull, and Log-normal distributions. And then, the optimum failure distribution model is selected by goodness of fit test. The reliability data analysis program is developed using ASP language. The failure rate, MTBF, life, and failure mode of mechanical parts are estimated and searched by this program. The failure data and analysis results are stored in the database.

  • PDF

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

A Study on the Reliability Analysis for a Linear Type Pneumatic Actuator with Cross Roller Guide (리니어 타입 크로스 롤러 가이드 공압 액추에이터의 신뢰성 평가에 관한 연구)

  • Shin Bong-Cheol;Cho Myeong-Woo;Kang Sung-Min;Lee Soo-Jin;Choi Jin-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.184-189
    • /
    • 2006
  • This research presents the performance analysis of the linear type pneumatic actuators that are used in semi-conductor assembly line to transfer some product with high accuracy. To increase positioning and repetitive accuracies, a cross roller guide is implemented inside the pneumatic actuator. The finite element method is used to verify the force against working moments, and reliability analysis is performed to classify the breakdown cases. Also, reliability, failure rate, probability density function, and $B_{10}$ to life are estimated under the boundary of thrust or air leakage conditions. In this study, the failure probabilistic function of the pneumatic actuators is analyzed using Weibull distribution.

Research of Reliability Assessment through the Analysis of Field Data and Taguchi Method about Vehicle Components Problem (차량부품 문제에 대한 실험계획법과 Field Data 분석을 통한 신뢰성 평가연구)

  • Kang, Chang-Hak;You, Jae-Bog;Lee, Chi-Woo;Kim, Jang-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.211-217
    • /
    • 2010
  • As the vehicle components are various, we confront unexpected problems in the development and application of them. also warranty expenses occur in the result of unconfirmed warranty.in this paper, to solve the problems of disconnection of damper Strut cable, we applied the optimum conditions through taguchi method for improvement of durability. and we made standard of reliability by weibull analysis of the field data. we acquired reliability standard by correlation with lab data and confirmed improved components satisfying the target of reliability. The analysis of reliability by field data is very useful and we need to apply this method to other components, the correlation between field data and Lab Test has influence on satisfying the target of reliability.this method would be utilized for current mass production components and upcoming developed components. the reliability of durability should be continuously used in the basis of primary technique in cope with competitive automotive companies.

  • PDF