• Title/Summary/Keyword: Web information recommendation system

Search Result 180, Processing Time 0.023 seconds

Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls (인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.177-191
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.

  • PDF

Contents Recommendation Search System using Personalized Profile on Semantic Web (시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템)

  • Song, Chang-Woo;Kim, Jong-Hun;Chung, Kyung-Yong;Ryu, Joong-Kyung;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.318-327
    • /
    • 2008
  • With the advance of information technologies and the spread of Internet use, the volume of usable information is increasing explosively. A content recommendation system provides the services of filtering out information that users do not want and recommending useful information. Existing recommendation systems analyze the records and patterns of Web connection and information demanded by users through data mining techniques and provide contents from the service provider's viewpoint. Because it is hard to express information on the users' side such as users' preference and lifestyle, only limited services can be provided. The semantic Web technology can define meaningful relations among data so that information can be collected, processed and applied according to purpose for all objects including images and documents. The present study proposes a content recommendation search system that can update and reflect personalized profiles dynamically in semantic Web environment. A personalized profile is composed of Collector that contains the characteristics of the profile, Aggregator that collects profile data from various collectors, and Resolver that interprets profile collectors specific to profile characteristic. The personalized module helps the content recommendation server make regular synchronization with the personalized profile. Choosing music as a recommended content, we conduct an experience on whether the personalized profile delivers the content to the content recommendation server according to a service scenario and the server provides a recommendation list reflecting the user's preference and lifestyle.

Discovery and Recommendation of User Search Patterns from Web Data (웹 데이터에서의 사용자 탐색 패턴 발견 및 추천)

  • 구흠모;양재영;홍광희;최중민
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-296
    • /
    • 2002
  • 웹 사용 마이닝은 데이터마이닝을 바탕으로 사용자의 로그 파일 정보를 이용하여 웹이 이용되는 패턴을 발견한다. 이를 이용하여 웹을 개선하여 사용자들이 보다 빨리 원하는 내용을 검색할 수 있도록 할 수 있으며 시스템 관리자에게는 효율적인 웹 구조를 인한 정보를 제공할 수 있다. 웹 사용 마이닝에서 사용하는 데이터는 성형화되어 있지 않으며 웹 사용 패턴을 분석하는데 방해가 되는 잡음 데이터까지 포함하고 있다. 이것은 기존에 개발된 여러 데이터마이닝 기법을 적용하는데 어려움으로 작용한다. 이러한 어려움을 해결하기 위해 본 논문에서는 새로운 방법을 도입한 SPMiner을 .제안한다. SPMiner는 웹의 구조를 이용하여 로그 파일의 전처리 과정을 줄이며 사용자의 탐색 패턴 분석을 효율적으로 수행 할 수 있는 시스템이다. SPMiner는 WebTree 에이전트를 이용하여 웹 사이트 구조를 분석하여 WebTree를 생성하고 사용자 로그 파일을 분석하여 각 웹 페이지의 사용빈도에 대한 정보를 추출한다. WebTree와 로그 파일에서 추출된 웹 페이지에 대한 정보는 SPMiner에 의해 패턴을 분석할 퍼 이용될 수 있는 형태인 WebTree$^{+}$로 병합된다 WebTree$^{+}$는 패턴 발견을 쉽게 해주며 사용자에게 추천할 정보나 웹 페이지를 능동적으로 추천할 수 있게 만들어 준다.

  • PDF

Design of Web Recommendation Service Based on Consumer's Sensibility (고객 감성에 기반한 웹 추천 서비스 설계)

  • Jeon, Yong-Woong;Kim, Jae-Kuk;Park, Ji-Young;Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • Internet shopping has been getting more rousing due to extension of supply with PC(personal computer) and a rapid rise of use of internet. Some companies have been continually researching in how to serve individuals with each ordered information, which aimed at getting ordinary customers to induce to be loyal customers. For that, there is progress of a service of a web-recommendation which considers individual attribution. This study is suggested a method which is a service of the web-recommendation by access to sensibility ergonomics approach. Previous studies established that service had a weak point. It did not manage to realize new needs of customers. Proposed service of the web-recommendation has been designed, which preferentially propose goods included customer's sensibility to the customer who wants it. This study is expected that it will encourage a rise of products' purchasing power of customers, make an increase in a profit of both sellers and people who operate electric commercial and satisfaction of customers will go up in the same. Also, products accord with sensibility of customers will be recommended customers by the suggested service of the web-recommendation. In addition, there will be a decline of time-consuming about making a choice among some products.

Movie Recommendation Algorithm Using Social Network Analysis to Alleviate Cold-Start Problem

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.616-631
    • /
    • 2019
  • With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.

Hybrid Product Recommendation for e-Commerce : A Clustering-based CF Algorithm

  • Ahn, Do-Hyun;Kim, Jae-Sik;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.416-425
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.

  • PDF

Personalized Book Recommendation System based on Semantic Web (시맨틱웹 기반 개인 맞춤형 도서 추천 시스템)

  • Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1097-1104
    • /
    • 2011
  • In this paper, we propose a semantic web approach for personalized book recommendation. Our approach takes advantage of the content-based recommendation and improves its disadvantage that users should input their interesting fields into all book search systems they use. Our approach provides the sharing of users' profile with their interesting fields by enabling user's interesting fields to be described over each book classification ontology of various book information providers. We also provide a middleware that manages users' profiles written in RDF and analizes similarity between user's interesting field and each concept over the book classification ontology. Our approach provide better performance than traditional keyword-based search by sharing the user's profile among book recommendation systems.

Dynamic Web Recommendation Method Using Hybrid SOM (하이브리드 SOM을 이용한 동적 웹 정보 추천 기법)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.471-476
    • /
    • 2004
  • Recently, provides information which is most necessary to the user the research against the web information recommendation system for the Internet shopping mall is actively being advanced. the back which it will drive in the object. In that Dynamic Web Recommendation Method Using SOM (Self-Organizing Feature Maps) has the advantages of speedy execution and simplicity but has the weak points such as the lack of explanation on models and fired weight values for each node of the output layer on the established model. The method proposed in this study solves the lack of explanation using the Bayesian reasoning method. It does not give fixed weight values for each node of the output layer. Instead, the distribution includes weight using Hybrid SOM. This study designs and implements Dynamic Web Recommendation Method Using Hybrid SOM. The result of the existing Web Information recommendation methods has proved that this study's method is an excellent solution.

Medical Herbs Recommendation System based on Web (WEB 기반 약선 식품 추천)

  • Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.121-126
    • /
    • 2020
  • In oriental medicine, it is rare to recommend the same herbal medicine to other patients because it is very effective in using a certain medicine for a patient with a certain disease. Because the same prescription works well for some people, but very bad results for some people. In order to solve this problem, we developed an algorithm that automatically recommends medicinal products when the patient biometric and Sasang constitution information are selected in the web program. Moreover, in this paper, it developed SWproducts to automatically determine the patients' constitution.

A Study on Personalized Recommendation Method Based on Contents Using Activity and Location Information (이용자 이용행위 및 콘텐츠 위치정보에 기반한 개인화 추천방법에 관한 연구)

  • Kim, Yong;Kim, Mun-Seok;Kim, Yoon-Beom;Park, Jae-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.1
    • /
    • pp.81-105
    • /
    • 2009
  • In this paper, we propose user contents using behavior and location information on contents on various channels, such as web, IPTV, for contents distribution. With methods to build user and contents profiles, contents using behavior as an implicit user feedback was applied into machine learning procedure for updating user profiles and contents preference. In machine learning procedure, contents-based and collaborative filtering methods were used to analyze user's contents preference. This study proposes contents location information on web sites for final recommendation contents as well. Finally, we refer to a generalized recommender system for personalization. With those methods, more effective and accurate recommendation service can be possible.