• Title/Summary/Keyword: Web Recommendation

Search Result 314, Processing Time 0.024 seconds

Development of a Web Service for Cosmetics Recommendation based on an Artificial Intelligence for User Personal Color Generation (사용자 퍼스널 컬러 생성을 위한 인공지능 기반 화장품 추천 웹 서비스 개발)

  • Suk-Hyung Hwang;Min-Taek Lim;Hun-Tae Hwang;Seung-Jun Lee;Soo-Hwan Kim;Se-Woong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.461-463
    • /
    • 2023
  • MZ세대를 중심으로 자기관리를 열심히 하는 사람들이 증가함에 따라 화장의 기본이 되는 개인 피부톤(퍼스널 컬러)을 찾는 것이 중요시되고 있다. 현재 대다수 사람은 자신에게 어울리는 퍼스널 컬러를 찾기 위해 높은 비용을 지불하여 전문가를 이용하거나 객관적이고 정량화된 기준 없이 오랜 시간을 투자하여 스스로 퍼스널 컬러를 찾는 등 시간과 비용 측면에서의 한계점을 가지고 있다. 본 논문에서는 이를 보완하기 위해 이미지 기반 인공지능 기술(객체 탐지, 객체 분할, BeautyGAN)을 적용하여 데이터 기반의 정량적인 기준을 생성하고, 퍼스널 컬러에 알맞은 화장품 추천 웹 서비스를 제안한다.

  • PDF

Dependency Label based Causing Inconsistency Axiom Detection for Ontology Debugging (온톨로지 디버깅을 위한 종속 부호 기반 비논리적 공리 탐지)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.764-773
    • /
    • 2008
  • The web ontology language(OWL) has become a W3C recommendation to publish and share ontologies on the semantic web. In order to check the satisfiablity of concepts in OWL ontology, OWL reasoners have been introduced. But most reasoners simply report check results without providing a justification for any arbitrary entailment of unsatisfiable concept in OWL ontologies. In this paper, we propose dependency label based causing inconsistency axiom (CIA) detection for debugging unsatisfiable concepts in ontology. CIA is a set of axioms to occur unsatisfiable concepts. In order to detect CIA, we need to find axiom to cause inconsistency in ontology. If precise CIA is gave to ontology building tools, these ontology tools display CIA to debug unsatisfiable concepts as suitable presentation format. Our work focuses on two key aspects. First, when a inconsistency ontology is given, it detect axioms to occur unsatisfiable and identify the root of them. Second, when particular unsatisfiable concepts in an ontology are detected, it extracts them and presents to ontology designers. Therefore we introduce a tableau-based decision procedure and propose an improved method which is dependency label based causing inconsistency axiom detection. Our results are applicable to the very expressive logic SHOIN that is the basis of the Web Ontology Language.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Broadcast Content Recommender System based on User's Viewing History (사용자 소비이력기반 방송 콘텐츠 추천 시스템)

  • Oh, Soo-Young;Oh, Yeon-Hee;Han, Sung-Hee;Kim, Hee-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • This paper introduces a recommender system that is to recommend broadcast content. Our recommender system uses user's viewing history for personalized recommendations. Broadcast contents has unique characteristics as compared with books, musics and movies. There are two types of broadcast content, a series program and an episode program. The series program is comprised of several programs that deal with the same topic or story. Meanwhile, the episode program covers a variety of topics. Each program of those has different topic in general. Therefore, our recommender system recommends TV programs to users according to the type of broadcast content. The recommendations in this system are based on user's viewing history that is used to calculate content similarity between contents. Content similarity is calculated by exploiting collaborative filtering algorithm. Our recommender system uses java sparse array structure and performs memory-based processing. And then the results of processing are stored as an index structure. Our recommender system provides recommendation items through OPEN APIs that utilize the HTTP Protocol. Finally, this paper introduces the implementation of our recommender system and our web demo.

Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model (자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발)

  • Jeon, In-seong;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2022
  • In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.

The Development and Effects of WEB Instruction Programs for Drug Abuse Prevention in Korean Adolescents (청소년의 약물남용예방을 위한 웹 활용 학습 프로그램 개발 및 효과)

  • Min, Young-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.4
    • /
    • pp.1055-1065
    • /
    • 2000
  • The purpose of this study was to develop, through the integration of instructional theory, a Courseware and to investigate the effectiveness of a web-based computer assisted instruction(WBI) program for preventing drug abuse, a serious problem for youth problem. During the first stage of this study done "Drug Abuse Prevention" Courseware was developed based on, Gagn & Brigg's instructional design theory, Keller's ARCS theory and the CAI model of Hannafin & Peck. For the second stage, the courseware was used to provide education for students adolescents in drug abuse prevention. This study used an quasi-experimental, one-group pretest-posttest design with a convenience sample of 36 male high school students who were at one high school located in Seoul. Data were collected using self-reported questionnaires which included a learning achievement tool, the Keller's IMMS (Instructional Material Motivation Survey), on attitudes to drug use, and on responses to the WBI instruction. Prior to the experiment, the "drug abuse prevention" learning method and the procedures of the study were explained to the students, and then the learning achievement of the subjects was measured as a pretest. The students were then given 2 weeks WBI utilizing the courseware. A post-test which included the pre-test learning achievement questionnaire and a survey of learning motivation and attitudes toward drug were given two weeks after the education was completed. The data analysis was done using SPSS/PC. Paired t-test was used to analyze the differences between the pre-test and post-test scores for learning achievement. The results of the analysis are as follows: There were significant differences in learning achievement between the pre-test and post-test(t=-18.62, p=0.000). The hypothesis, that learning achievement will be higher, after the class has used the courseware, than before was supported. The scores for learning motivation and attitudes toward drugs were also higher than the results of existing studies. In conclusion, this study suggests that WBI is an effective learning method in the prevention of drug abuse for adolescents as it can be used for self-learning and repeated learning as assisted instruction. Recommendation would be given that further research needs to be develped in the courseware by cognitive learning style and by multimedia courseware and virtual reality system.

  • PDF

A Multi-Agent framework for Distributed Collaborative Filtering (분산 환경에서의 협력적 여과를 위한 멀티 에이전트 프레임워크)

  • Ji, Ae-Ttie;Yeon, Cheol;Lee, Seung-Hun;Jo, Geun-Sik;Kim, Heung-Nam
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.119-140
    • /
    • 2007
  • Recommender systems enable a user to decide which information is interesting and valuable in our world of information overload. As the recent studies of distributed computing environment have been progressing actively, recommender systems, most of which were centralized, have changed toward a peer-to-peer approach. Collaborative Filtering (CF), one of the most successful technologies in recommender systems, presents several limitations, namely sparsity, scalability, cold start, and the shilling problem, in spite of its popularity. The move from centralized systems to distributed approaches can partially improve the issues; distrust of recommendation and abuses of personal information. However, distributed systems can be vulnerable to attackers, who may inject biased profiles to force systems to adapt their objectives. In this paper, we consider both effective CF in P2P environment in order to improve overall performance of system and efficient solution of the problems related to abuses of personal data and attacks of malicious users. To deal with these issues, we propose a multi-agent framework for a distributed CF focusing on the trust relationships between individuals, i.e. web of trust. We employ an agent-based approach to improve the efficiency of distributed computing and propagate trust information among users with effect. The experimental evaluation shows that the proposed method brings significant improvement in terms of the distributed computing of similarity model building and the robustness of system against malicious attacks. Finally, we are planning to study trust propagation mechanisms by taking trust decay problem into consideration.

  • PDF

An Implementation of an Agent for Recommending Sensitive Information on Mobile Environment (감성형 모바일 정보 추천 에이전트 구현)

  • Park, Eun-Young;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • The paper proposes information system for providing proper well known delicious restaurants as interactions with users. The system calls 'Moloke', which is an agent for recommending sensitive information on mobile environment The proposing agent differs from existing ones that guide the telephone number and the name of the restaurant. The differences are as following goals. First, the agent gets existing from users as interactive communications on mobile devices through the proper requests on each time zone such as morning, afternoon, and evening. Second, the agent also can recommend a specific restaurant for current personal states such as parties, special community meetings, bio-rhythms and so on. Among them, specially the bio-rhythm is used for recommending proper restaurants to each user. In addition to through proposal suitable design for the mobile agent design more effectively. The research used mobile environment for recommendation service and web environment for data management. Server environment for service used Apache, PHP4, Mysql and mobile page was implemented m-html for approach. Mobile Service was optimized Mozilla-1.22, KUN-1.2.3 Browser

  • PDF