최근 웹 서비스의 발달과 함께 웹 컨텐츠를 다양하게 활용함으로써, 사용자의 경험을 기반으로 한 개인화 분석이 주목 받고 있다. 기존의 개인화 분석은 주로 데이터베이스의 데이터를 활용한 규칙 및 통계 모형을 기준으로 수행되고 있다. 이에 시장조사 소요기간에 따른 적시성을 반영하는데 어려움이 있었으며, 데이터베이스 적재 데이터가 고객 행동에 대한 결과였기 때문에 고객의 이용 특성을 반영하는데 한계가 지적되어 왔다. 그러나, 최근 고객의 사이트 방문에서부터 방문을 종료할 때까지의 모든 행동을 추적하고 분석하여 개인화된 서비스를 제공하기 위한 많은 연구와 상용화된 기술 개발이 진행되었다. 본 연구에서는 온라인상에서의 고객 행동을 웹 로그 분석을 이용하여 분석함으로써 고객의 행동정보를 U-Score(Usage Score, 이용지수), P-Score(Preference Score, 선호지수), M-Score(Mania Score, 마니아지수) 등 다양한 고객 선호지수를 도출하였다. 이러한 고객의 선호지수를 통해 웹 컨텐츠에 대한 고객의 선호정보를 파악함으로써, 고객에 대한 심도 있는 리포팅과 고객관계관리가 가능하며 개인화 추천 서비스에 유용하게 사용할 수 있다.
In recent years, with the advent of e-Commerce the need for personalized services and one-to-one marketing has been emphasized. To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. In this paper, we provide an intelligent agent approach to incorporate human sensibility into an one-to-one recommendation service in cyber shopping mall. Our system exploits human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system`s behavior requires the parallel execution of several tasks during the interaction (e. g., identifying the customer`s emotional preference and dynamically generating the pages of the store catalog). The recommendation agent system composed of five modules including specialized agents carries on these tasks. By presenting goods that are consistent with user interests as well as user sensibility, the accuracy and satisfaction of the recommendation service may be improved.
To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. This paper deals with an intelligent agent approach to incorporate customer's sensibility into an one-to-one recommendation service in on-line shopping mall. In this paper the focus of interest is on-line recommendation service algorithm for development of Human Sensibility based web agent system. The recommendation agent system composed of seven services including specialized algorithm. The on-line recommendation service algorithm use human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system's behavior requires the parallel execution of several tasks during the interaction (e.g., identifying the customer's emotional preference and dynamically generating the pages of the store catalog). Most of the present shopping malls go through the catalog of goods, but the future shopping malls will have the form of intelligent shopping malls by applying the on-line recommendation service algorithm.
본 논문에서는 고객의 다양한 감성에 기반한 웹 디자인을 통해 사용자들로 하여금 새로운 경험을 체험하도록 정적과 동적 요소에 따른 16개의 감성 차원을 모델링하고 페이지 레이아웃, 배경색, 움직임 좌표 등의 감성 데이터베이스를 활용하여 고객의 선호 감성에 따라서 웹 페이지가 재구성되는 유무선 인터넷 서비스 시스템을 제안한다. 실험 결과 기존 시스템보다 세대별 감성 만족도 및 웹 사이트의 평균체류시간이 증가되었음을 모의 실험을 통해서 확인하였다.
인터넷이 등장하면서 수 많은 고객이 웹 사이트를 방문하고, 구매나 컨텐츠 이용 등의 다양한 활동을 하게 된다. 그로 인해 웹 시스템에는 방대한 양의 자로가 축적되고 그 자료는 고객의 개인화(Personalization)된 서비스를 가능하게 한다. 고객의 개별적인 특성이나 선호도를 반영한 개인화는 웹 시스템은 봇물처럼 개발되고 있으며, 인터넷 시스템에서 고객의 정보를 분류하기 위해서는 정성적인 지식과 정량적인 지식을 체계적으로 반영하여야 한다. 이러한 두 종류의 지식이 최적의 솔루션을 제공할 수 있도록 사용되어지기 위해서는 일관성과 유연성을 갖는 지식 통합이 이루어져야 한다. 지식 통합은 고객의 개인 선호도를 반영하거나 잘 분류할 수 있게 하기 위해서 먼저 지식 표현이 전제된다. 본 연구는 이러한 지식 통합시스템을 웹 투자 고객에 초점을 맞추어 프로토타입을 개발하였다. 개발된 시스템은 정성적 지식의 추출과 추론 방식 그리고 정성적 지식과 정량적 지식과의 통합 방식을 사용하고 있으며, 고객의 개인 선호도 입력에서부터 포트폴리오 구성가지 전반적인 프로시져를 잘 반영하고 있다. 제안한 지식기반 통합 모형을 가지고 실험적인 분석을 통하여 개인 선호도를 고려한 투자의사결정 문제의 퇴적 포트폴리오 구성에서 우수성을 보이며 정성적 지식이 갖는 투자환경의 변화에 매우 탄력적임을 보여준다.
Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.
Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.
서비스 산업의 비중이 날로 높아지는 시기에 마케팅 전략 수립에 있어서 차별화된 서비스 품질 제공이 더욱 중요하게 인식되고 있다. 감시카메라 등으로 사용되면서 문제점만 부각되고 있는 웹카메라를 감시나 보안 등의 목적 외에 차별화된 서비스 품질 제공의 수단으로 활용되기 위한 연구가 필요하다. 따라서 본 연구에서는 유치원/어린이집 학부모를 대상으로 WebCam에 의한 원격모니터링 서비스의 서비스 품질 구성요인에 대한 재구성 및 서비스 품질요인이 고객의 성향에 따라 어떻게 인식되는지에 대한 연구를 실시하였으며, WebCam에 의한 서비스 품질 구성요인이 고객만족 및 고객충성도에 주는 영향요인을 규명하였다. 이러한 변수 간의 상관관계와 영향 현상을 연구하기 위해 WebCam 원격모니터링 서비스를 사용하고 있는 유치원/어린이 집을 대상으로 설문조사를 하였다. 연구결과 WebCam 모니터링 서비스 품질 구성요인을 영상품질 및 전송속도, 편의성, 이동성 및 휴대성, 가시성, 상호작용성, 신뢰성으로 설정하였으며, 그 중 영상품질 및 전송속도, 가시성, 상호작용성, 신뢰성이 고객만족 영향요인으로 나타났다. 고객특성 변수 중에서 불만대처성향, 혁신성, 디지털 기기 숙련도에 따라 서비스 품질 인식에 차이가 있는 것으로 나타났으며, 이러한 연구결과가 마케팅적으로 어떻게 활용될 수 있는가가 논의된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.