• Title/Summary/Keyword: Weaving Trajectory

Search Result 8, Processing Time 0.036 seconds

A New Planning Algorithm of Weaving Trajectory Using Bezier Spline for A Welding Robot (Bezier Spline을 이용한 용접 로봇의 새로운 Weaving Motion 궤적 생성 알고리즘)

  • 정원지;김대영;서영교;홍형표;홍대선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.113-118
    • /
    • 2004
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. Through simulations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning so that it's trajectory cannot penetrate into a base metal compared to the conventional algorithm using Catmull-Rom curve.

A New Planning Algorithm of Weaving Trajectory Using Bezier Spline (Bezier Spline을 이용한 새로운 Weaving Motion 궤적 생성 알고리즘)

  • 김대영;김재량;정원지;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1760-1763
    • /
    • 2003
  • In this paper, we propose a new weaving trajectory algorithm for the are welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms rising Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. The algorithm has been implemented on to the industrial manipulator of DR6 so as to show its real possibility. Through simulations and real implementations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning and can reduce the processing time because it needs one-half calculation compared to the conventional algorithm using Catmull-Rom curve.

  • PDF

A New Algorithm of Weaving Motion Using Bezier Spline

  • Chung, Won-Jee;Hong, Dae-Sun;Kim, Dae-Young;Seo, Young-Kyo;Hong, Hyung-Pyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2743-2746
    • /
    • 2003
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. The algorithm has been implemented on to the industrial manipulator of DR6 so as to show its real possibility. Through simulations and real implementations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning and can reduce the processing time because it needs one-half calculation compared to the conventional algorithm using Catmull-Rom curve.

  • PDF

A Study on the Safety-Maximizing Design of Exclusive Bus Lanes (안전성 제고를 위한 버스전용차로 디자인 연구)

  • Yang, Chul-Su
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.4
    • /
    • pp.21-32
    • /
    • 2012
  • Exclusive bus lane (EBL) is typically located in the roadway median, and is accessed by weaving across the GPLs(general purpose lanes) before entering from the left lane of the GPLs. To maximize the potential for successful EBL operations, a critical design issue that requires special attention is the length of bus weaving section before entering EBL. The process of developing guidelines for the length of bus weaving section can be supported by a sensitivity analysis of performance measure (safety) with respect to the bus weaving distance. However, field data are difficult to obtain due to inherent complexity in creating performance measure (safety) samples under various interesting flows and bus weaving distance that are keys to research success. In this paper, VISSIM simulation is applied to simulate the operation of roadway weaving areas with EBL, and based on vehicle trajectory data from microscopic traffic simulation models, the Surrogate Safety Assessment Model (SSAM) computes the number of surrogate conflicts (or degree of safety) with respect to the bus weaving distance. Then, a multiple linear regression (MLR) model using safety data (number of surrogate conflicts) is developed. Finally, guidelines for bus weaving distance are established based on the developed MLR. Developed guidelines explicitly indicate that a longer bus weaving distance is required to maintain desired safety as weaving volume increases.

Development of a Intelligent Welding Carriage for Automation of Curved Block (곡 블록 자동화를 위한 지능형 용접 캐리지 개발)

  • Choi HeeByoung;Moon JongHyun;Jun WanLyul;Kim Sehwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.171-176
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, 1-7 (mm) and inclination, 0-30 (deg). Since available conventional carriage type is limited to use below root gap of 3 (mm), only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage. current, weaving speed, dwell time and travel speed, with respect to root gap and inclination to achieve good welding qualify. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verifying the trajectory tracking accuracy of end-effector.

  • PDF

Methodology for Calculating Surrogate Safety Measure by Using Vehicular Trajectory and Its Application (차량궤적자료를 이용한 SSM 산출 방법론 개발과 적용사례 분석)

  • PARK, Seongyong;LEE, Chungwon;KHO, Seung-Young;LEE, Yong-Gwan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.323-336
    • /
    • 2015
  • Estimating the risks on the roadway using surrogate safety measures (SSM) has an advantage in that it focuses on the vehicle trajectory directly involved in conflicts. On the other hand, there is a restriction on estimating the risks of continuous segments due to the limited data collected from a location. To overcome the restriction, this study presents the scheme of acquiring the vehicular trajectory using real time kinematics-differential global positioning system (RTK-DGPS) and develops a methodology which contains the considerations of the problems to calculate the SSM such as time-to-collision (TTC), deceleration rate to avoid collision (DRAC) and acceleration noise (AN). By using the methodology, this study shows a result from an experiment executed in a section where the variation of vehicular movement can be observed from several continuous flow roadway sections near Seoul and Gyeonggi Province in Korea. The result illustrated the risks on the roadway by the SSM metrics in certain situations like merging and diverging, stop-and-go, and weaving. This study would be applied to relate the dangers with characteristics of drivers and roadway sections, and prevenst accidents or conflicts by detecting dangerous roadway sections and drivers' behaviors. This study contributes to improving roadway safety and reducing car-accidents.

Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images (드론 영상을 활용한 차량궤적자료 기반 고속도로 미시적 교통분석)

  • Ko, Eunjeong;Kim, Soohee;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.66-83
    • /
    • 2021
  • Vehicles experience changes in driving behavior due to the various facilities on the freeway. These sections may cause repetitive traffic congestion when the traffic volume increases, so safety issues may be raised. Therefore, the purpose of this study is to perform microscopic traffic analysis on these sections using drone images and to identify the causes of traffic problems. In the case of drone image, since trajectory data of individual vehicles can be obtained, empirical analysis of driving behavior is possible. The analysis section of this study was selected as the weaving section of Pangyo IC and the sag section of Seohae Bridge. First, the trajectory data was extracted through the drone image. And the microscopic traffic analysis performed on the speed, density, acceleration, and lane change through cell-unit analysis using Generalized definition method. This analysis results can be used as a basic study to identify the cause of the problem section in the freeway. Through this, we aim to improve the efficiency and convenience of traffic analysis.

Development of a Intelligent Welding Carriage for Automation of Curved Block

  • Choi, H.B.;Moon, J.H.;Jun, W.R.;Kim, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-630
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, $1{\sim}7$ [mm] and inclination, $0{\sim}30$ [deg]. Since available conventional carriage type is limited to use below root gap of 3 [mm], only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage, current and travel speed, with respect to root gap and inclination to achieve good welding quality. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verify the trajectory tracking accuracy of end-effector.

  • PDF