• Title/Summary/Keyword: Weather-conditions

Search Result 1,771, Processing Time 0.034 seconds

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

The Characteristics of the Rural Landscape of Daesan Plain Around the Japanese Colonial Era (일제강점기 전후 대산평야 농촌경관의 형성과 변화)

  • Jeong, Jae-Hyeon;Lee, Yoo-Jick
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The study primarily aims to examine the characteristics of the transition from natural landscape to modern agricultural landscape on the Daesan plain in Dong-myeon, Changwon-si, in the lower reaches of the Nakdong River. The periods covered in the transition include the late Joseon Dynasty, the early Japanese colonial period, and the late Japanese colonial period. The study concluded the following: It was found that the Daesan Plain used to function as a hydrophilic landscape before it formed into a rural landscape. This is characterized by the various water resources in the Plain, primarily by the Nakdong River, with its back marsh tributaries, the Junam Reservoir and Jucheon. To achieve its recent form, the Daesan Plain was subjected to human trial and error. Through installation of irrigation facilities such as embankments and sluices, the irregularly-shaped wetlands were transformed into large-scale farmlands while the same irrigation facilities underwent constant renovation to permanently stabilize the rural landscape. These processes of transformation were similarly a product of typical colonial expropriation. During the Japanese colonial period, Japanese capitalists initiated the construction of private farms which led to the national land development policy by the Governor-General of Korea. These landscape changes are indicative of resource capitalism depicted by the expansion of agricultural production value by the application of resource capital to undeveloped natural space for economic viability. As a result, the hierarchical structure was magnified resulting to the exacerbation of community and economic structural imbalances which presents an alternative yet related perspective to the evolution of landscapes during the Japanese colonial period. In addition, considering Daesan Plain's vulnerability to changing weather conditions, natural processes have also been a factor to its landscape transformation. Such occurrences endanger the sustainability of the area as when floods inundate cultivated lands and render them unstable, endangering residents, as well as the harvests. In conclusion, the Daesan Plain originally took the form of a hydrophilic landscape and started significantly evolving into a rural landscape since the Japanese colonial period. Human-induced land development and geophysical processes significantly impacted this transformation which also exemplifies the several ways of how undeveloped natural landscapes turn into mechanized and capitalized rural landscapes by colonial resource capitalism and development policies.

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Changes in Mean Temperature and Warmth Index on the Korean Peninsula under SSP-RCP Climate Change Scenarios (SSP-RCP 기후변화 시나리오 기반 한반도의 평균 기온 및 온량지수 변화)

  • Jina Hur;Yongseok Kim;Sera Jo;Eung-Sup Kim;Mingu Kang;Kyo-Moon Shim;Seung-Gil Hong
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • Using 18 multi-model-based a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) climate change scenarios, future changes in temperature and warmth index on the Korean Peninsula in the 21st century (2011~2100) were analyzed. In the analysis of the current climate (1981~2010), the ensemble averaged model results were found to reproduce the observed average values and spatial patterns of temperature and warmth index similarly well. In the future climate projections, temperature and warmth index are expected to rise in the 21st century compared to the current climate. They go further into the future and the higher carbon scenario (SSP5-8.5), the larger the increase. In the 21st century, in the low-carbon scenario (SSP1-2.6), temperature and warmth index are expected to rise by about 2.5℃ and 24.6%, respectively, compared to the present, while in the high-carbon scenario, they are expected to rise by about 6.2℃ and 63.9%, respectively. It was analyzed that reducing carbon emissions could contribute to reducing the increase in temperature and warmth index. The increase in the warmth index due to climate change can be positively analyzed to indicate that the effective heat required for plant growth on the Korean Peninsula will be stably secured. However, it is necessary to comprehensively consider negative aspects such as changes in growth conditions during the plant growth period, increase in extreme weather such as abnormally high temperatures, and decrease in plant diversity. This study can be used as basic scientific information for adapting to climate change and preparing response measures.

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

The Selection of Proper Resource and Change of Salinity in Helianthus tuberosus L. Cultivated in Saemangeum Reclaimed Tidal Land (새만금간척지에서 뚱딴지(Helianthus tuberosus L.) 재배시 염류 특성 변화 및 적정 자원 선발)

  • Oh, Yang-Yeol;Lee, Jung-Tae;Hong, Ha-Cheol;Kim, Jae-Hyun;Seo, Woo-Duck;Kim, Sun;Ryu, Jin-Hee;Lee, Su-Hwan;Kim, Young-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2018
  • BACKGROUND: Soil salinity of reclaimed tidal land in Korea is highly important factor. High salinity is harmful to crop productivity. Jerusalem artichoke (Helianthus tuberosus L.) is known to be salt-tolerant and has high adaptability to diverse pedo-climatic conditions. The objective of this study was to assess the changes of soil properties and crop productivity according to salt concentration in the reclaimed tidal lands. METHODS AND RESULTS: Experimental sites were selected at Saemangeum ($35^{\circ}46^{\prime}N$, $126^{\circ}37^{\prime}E$) reclaimed tidal land, and their dominant soil series were Munpo (coarse loamy, mixed, non-acid, mesic, typic Fluvaquents). H. tuberosus L were collected from 12 locations across Korea. Tubers were planted at $75{\times}25cm$ with EC 2 to $7dS\;m^{-1}$. Soil samples were periodically collected from both 0~20 cm and 20~40 cm depths of each site. Soil salinity and soil moisture contents were varied depending on weather conditions. Soil electrical conductivity varied from 1.0 to $5.9dS\;m^{-1}$, and soil moisture contents varied from 9.2 to 28.7%. The white-colored tubers of H. tuberosus L. collected from 'Yeongwol-gun' exhibited the highest height (207 cm), followed by the white-colored tubers of H. tuberosus L. collected from 'Iksan-si'(202 cm). The white-colored tubers of H. tuberosus L. collected from 'GyeongJu-si' showed the highest yield (549 kg/10a). The purple-colored tubers of H. tuberosus L. collected from 'Yeongwol-gun' showed the highest yield (615 kg/10a). CONCLUSION: Our results indicate that the plant height and tuber yield did not appear to be correlated. Considering yield and inulin content, the GyeongJu-si seemed to be suitable as the white-colored tubers of H. tuberosus L. and the Yeongwol-gun seemed to be suitable as the purple-colored tubers of H. tuberosus L. in the reclaimed tidal lands. However, it is necessary to consider the relationship between the inulin content and the yield.

The Effect of Polypropylene Mulching Method on Growth of Quercus glauca Thunb. Seedling and Weed Treatments (부직포 멀칭 방식에 따른 종가시나무 묘목의 생장과 제초에 미치는 영향)

  • Sung, Chang-Hyun;Yoon, Jun-Hyuck;Jin, Eon-Ju;Bae, Eun-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.59-66
    • /
    • 2020
  • Recently, cultivation and management technologies have been needed to adapt due to climate change, which is causing abnormal weather conditions. One technique is to increase the utilization of evergreen broad-leaved species with high ornamental value. A total of five treatments were installed (1m×22.5m), including 60g/㎡ and 80g/㎡ using two types mulching material with an overlapping and hole-drilling mulching method and these were compared to un-mulching treatment a total of planted 92㎡ attheWol-aTestSiteForestattheForestforBiomaterialsResearchCenterinJinju-si, Gyeongsangnam-dofor 10monthsusing3-years-oldQuercusglaucaThunb. In comparison with the control site, the 60g/㎡ overlapping method was about 1.9 times higher than the root collar diameter, but there was no statistical significance between the treatments. Healthy seedlings were found to meet these conditions due to high biomass values and below and T/R ratios of 3.0 or lower and H/D ratios of 7.0 or lower. Comparing the values of LWR, SWR, and RWR, which can be evaluated for seedling due to the mulching treatments, as compared to the control, the growth of the ground areas including leaves and stems was enhanced, but the growth of the underground areas containing roots tended to have high control values. Based on this, the SQI value, which can be evaluated for the comprehensive quality of seedlings, was found to be significantly different between the control site and the mulching treatment sites, confirming that the growth and growth improvement effects were achieved with mulching treatments. The chlorophyll content analysis showed that there was a significant difference from the control site, and it was judged that weed generation in the control acted as an environmental stress, causing a decrease in chlorophyll content. It was found that the overlapping 80g/㎡ of polypropylene mulching material generated about 4 times fewer weeds than the control, and the manpower required for the mulching test field and weeding were equal at 3.3 people/100㎡/1 day. Mulching treatments have demonstrated a significant difference in the promotion of growth and quality of the seedlings and are judged as an alternative that can reduce the economic burden incurred by the purchase of the supplies and the manpower required to weed forestry plantations.