연구목적: 본 연구는 지반함몰 예방을 위하여 도로하부의 공동탐사를 실시한 후 확인된 공동 중 포장층의 재포장 공사 등에 의한 공동 위치 및 이력 정보를 알 수 없게 되어 누구라도 정보를 정확하게 파악할 수 있도록 할 수 있는 RFID 시스템의 현장 적용성을 평가하였다. 연구방법: RFID 시스템을 이용하여 맨홀, 전력관, 가스관, 통신관 등 지하매설물 및 태그 종류에 따른 아스팔트 하부의 깊이별 인식거리와 인식율 등 임시복구시 고무마개 하단부에 전자태그칩을 부착하여 현장 적용성을 평가하였다. 연구결과: 전자태그의 위치에 대한 심도별 인식거리 및 인식율은 심도 15cm까지는 큰 영향이 없으나 심도 20cm인 경우 다소 약한 편이다. 그리고 매설물이나 강우 시 침수 등에 대한 영향은 적은 편이며 도로의 기상상황 특히 바람의 영향이 있어 측정 시 이를 감안하여야 할 것이다. 결론: 포장도로관리스템의 현장 적용을 위한 RFID 태그에 공동위치를 포함하여 공동에 관한 확인 일자, 공동의 규모, 발생원인, 주변 지하 매설물 등의 여러 가지 제반 정보를 저장하여 전산화 및 모바일 활용도 가능한 시스템으로 공동관리 효과를 극대화 할 수 있다.
우주전파환경 변화의 중요성과 스마트 폰 및 드론과 같은 지자기 방향성과 연계된 전자장비의 보편화로 지자기 편각성분에 대한 효율적인 관측 방안 및 지자기 교란 영향에 대한 연구의 필요성이 높아지고 있다. 본 연구의 목적은 교외에 설치된 통합기준점을 방위표지로 한 지자기 편각관측의 타당성을 검토하는 것이다. 이를 위해 국내 중앙에 위치하며 INTERMAGNET에 가입된 청양 지자기관측소 자료를 활용하여 지자기 성분의 일변화 및 교란수준을 KP, KK와 연계하여 상관성을 분석하였다. 국내 지역 내, 통합기준점 3곳 및 개활지 1곳에 대한 지자기편각 관측을 수행하였다. 통합기준점을 활용한 편각측정의 타당성 검토를 위한 비교 기준으로 세계지자기모델을 선정하고 모델 값과 절대 관측 값 및 모델간의 편각편차를 비교 분석하였다. 연구결과, 교외 통합기준점을 방위표지로 활용한 지자기 편각성분의 절대관측의 적합성을 확인할 수 있었다.
본 연구에서는 재해 및 방재 관련 지명의 유형과 분포, 사례지역 조사를 토대로 지명을 통한 재해 및 방재 가능성을 탐색하였다. "한국지명총람"을 대상으로 106개의 검색 지명어에서 37,901개의 지명을 추출하였으며, 연구결과는 다음과 같다. 지명의 유형별 빈도는 지형재해 및 방재 관련 지명이 월등히 많았고, 특히 호우, 범람, 침수 재해와 관련된 지명이 탁월하였다. 지역적 분포는 영 호남 지역의 점유율이 높은 가운데 수(水), 사(沙), 야(野), 우(雨), 상(狀) 등이 전국적인 분포를 보인 반면 둠벙, 구렁, 여울, 탄(灘), 방죽, 제(提), 지(池) 등은 지역차가 커서 입지 및 지형적 특성이 지명에 투영되어 있음을 확인할 수 있었다. 사례지역 조사에서 우리나라는 기상현상과 지형조건이 결합된 범람 및 침수 재해의 가능성이 높아 수계와 곡지형에 대한 관리의 필요성이 제기되었다.
As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.
본 논문에서는 자율주행 자동차에 물체를 인식하고 거리를 측정하는데 효율적인 센서 융합을 제안한다. 자율주행 자동차에 사용되는 대표적인 센서는 레이더, 라이다, 카메라이다. 이 중 라이다 센서는 차량 주변의 맵을 만드는 역할을 한다. 하지만 날씨 조건에 성능이 하락하고 센서의 가격이 매우 비싸다는 단점 있다. 본 논문에서는 이러한 단점을 보완하고자 비교적 저렴하고 눈, 비, 안개에 지장 없는 레이더 센서로 거리를 측정하며 차량 주변을 관찰한다. 물체 인식률이 뛰어난 카메라 센서를 융합하여 물체 인식 및 거리를 측정한다. 융합된 영상은 IP서버를 통해 실시간으로 스마트폰에 전송되어 현재 차량의 상황을 내부, 외부에서 판단하는 자율주행 보조 시스템에 사용될 수 있다.
현재 자율주행차량은 테스트 이후 상용화를 눈앞에 두고 있다. 그러나 아직 자율주행차량이 완벽히 상용화되지 않았음에도 81건의 사고가 발생했으며, 사고를 피하기 위한 차량의 주행 방식은 LiDAR에 많이 의존하고 있다. 현재 상용화된 3레벨 자율주행차량이 4레벨 자율주행차량으로 발전하기 위해서는 기존에 수집되는 정보보다 더 많은 정보를 수집해야만 한다. 따라서 본 논문에서는 기존의 자율주행차량에서 수집하는 정보인 도로 정보, 기상정보를 포함하여 차량이 주행 중인 도로의 거칠기와 자기 자신 및 주변 차량의 탑승객 상태를 정확하게 인식하여 차량이 처한 위기 상황을 정확하게 계산하는 Driving Situation Judgment System (DSJS)을 제안한다. DSJS의 PDM에 대한 실험 결과, PDM은 기존 차량의 탑승객 인식 시스템보다 평균적으로 15.52% 더 정확하게 탑승객을 분류할 수 있었다. 본 연구는 기존 3단계 자율주행차량이 수집하는 데이터보다 더 다양한 종류를 수집하여 4단계 자율주행차량을 달성하는 기초연구가 될 수 있다.
자동차 번호판 인식은 지능형 교통시스템에서 핵심적인 역할을 담당한다. 따라서 효율적으로 자동차 번호판의 숫자 및 문자영역을 검출하는 것은 매우 중요한 과정이다. 본 연구에서는 딥러닝과 의미론적 영상분할 알고리즘을 적용하여 효과적으로 자동차 번호판의 번호영역을 검출하는 방법을 제안한다. 제안된 방법은 화소 투영과 같은 전처리과정 없이 번호판 영상에서 바로 숫자 및 문자영역을 검출하는 알고리즘이다. 번호판 영상은 도로 위에 설치된 고정 카메라로 부터 획득한 영상으로 날씨 및 조명변화 등을 모두 포함한 다양한 실제 상황에서 촬영된 것을 사용하였다. 입력 영상은 색상변화를 줄이기 위해 정규화하고 실험에 사용된 딥러닝 신경망 모델은 Vgg16, Vgg19, ResNet18 및 ResNet50이다. 제안방법의 성능을 검토하기 위해 번호판 영상 500장으로 실험하였다. 학습을 위해 300장을 할당하였으며 테스트용으로 200장을 사용하였다. 컴퓨터모의 실험결과 ResNet50을 사용할 때 가장 우수하였으며 95.77% 정확도를 얻었다.
본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.
최근의 감시 시스템은 카메라, 레이더 등 다양한 센서를 중복 사용하여 침입 탐지의 정확도를 향상시키려는 노력을 기울이고 있다. 그러나 야간, 악천후, 침입자의 위장 등으로 인해 카메라(RGB, Thermal) 센서를 통한 객체 인식이 정확하지 않을 때도 있다. 이러한 상황에서는 카메라나 레이더 센서를 통해 추출된 객체의 궤적을 활용하여 침입자를 탐지할 수 있다. 본 논문에서는 객체 인식이 어려운 환경에서 궤적 정보만을 이용하여 침입자를 탐지하는 방법을 제안한다. 제안하는 방법은 동물, 사람의 정상 및 비정상(침입, 배회) 궤적 데이터를 이용하여 LSTM-Attention 기반 궤적 분류 모델을 학습하고, 이 모델을 이용해서 사람의 비정상 궤적을 찾아내서 침입 탐지를 수행한다. 마지막으로, 제안하는 방법의 타당성을 실 데이터를 이용한 실험을 통해 입증한다.
In the era of ubiquitous computing, human-friendly man-machine interface is getting more attention due to its possibility to offer convenient services. For this, in this paper, we introduce a 'Half-Mirror Interface System (HMIS)' as a novel type of human-friendly man-machine interfaces. Basically, HMIS consists of half-mirror, USB-Webcam, microphone, 2ch-speaker, and high-speed processing unit. In our HMIS, two principal operation modes are selected by the existence of the user in front of it. The first one, 'mirror-mode', is activated when the user's face is detected via USB-Webcam. In this mode, HMIS provides three basic functions such as 1) make-up assistance by magnifying an interested facial component and TTS (Text-To-Speech) guide for appropriate make-up, 2) Daily weather information provider via WWW service, 3) Health monitoring/diagnosis service using Chinese medicine knowledge. The second one, 'display-mode' is designed to show decorative pictures, family photos, art paintings and so on. This mode is activated when the user's face is not detected for a time being. In display-mode, we also added a 'healing-window' function and 'healing-music player' function for user's psychological comfort and/or relaxation. All these functions are accessible by commercially available voice synthesis/recognition package.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.