• Title/Summary/Keyword: Weather file

Search Result 31, Processing Time 0.033 seconds

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

Forecasted Weather based Weather Data File Generation Techniques for Real-time Building Simulation (실시간 빌딩 시뮬레이션을 위한 예측 기상 기반의 기상 데이터 파일 작성 기법)

  • Kwak, Young-Hoon;Jeong, Yong-Woo;Han, Hey-Sim;Jang, Cheol-Yong;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Building simulation is used in a variety of sectors. In its early years, building simulation was mainly used in the design phase of a building for basic functions. Recently, however, it has become increasingly important during the operating phase, for commissioning and facility management. Most building simulation tools are used to estimate the thermal environment and energy consumption performance, and hence, they require the inputting of hourly weather data. A building simulation used for prediction should take into account the use of standard weather data. Weather data, which is used as input for a building simulation, plays a crucial role in the prediction performance, and hence, the selection of appropriate weather data is considered highly important. The present study proposed a technique for generating real-time weather data files, as opposed to the standard weather data files, which are required for running the building simulation. The forecasted weather elements provided by the Korea Meteorological Administration (KMA), the elements produced by the calculations, those utilizing the built-in functions of Energy Plus, and those that use standard values are combined for hourly input. The real-time weather data files generated using the technique proposed in the present study have been validated to compare with measured data and simulated data via EnergyPlus. The results of the present study are expected to increase the prediction accuracy of building control simulation results in the future.

TMY2 Weather data for Korea (TMY2 방식에 의한 국내 기상자료 작성 연구)

  • Shin, Kee-Shik;Yoon, Chang-Ryuel;Park, Sang-Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.243-246
    • /
    • 2009
  • To evaluate the building energy performance, many building simulation programs are used and its capabilities are developed. Despite of its increased capabilities the weather data used In the Building Energy performance evaluation, are still using the same limited set of data. This often forces users to find or calculate weather data such as illuminance, solar radiation, and ground temperature from other sources to calculate it. Also, proper selection of a right weather data set has been considered as one of important factors for a successful building energy simulation. In this paper, we describe TMY2 data, a generalized weather data format developed for use, and applied to Seoul region and examine the differences comparing to existing weather data. A set of 23 years raw weather data base has been developed to provide the weather data file for building energy analysis in Seoul.

  • PDF

The study of the solar radiation emitted per hour in Incheon applied in load calculation programs (부하계산 프로그램에서 적용되는 인천지역의 시간당 일사량에 관한 연구)

  • Yoo, Ho-Chun;Lee, Seon-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.108-117
    • /
    • 2010
  • Although many researches of simulation programs to predict climate under the current climate change have been performed but more detailed studies of weather date which might influence the load of buildings seem insufficient. In this study, in Incheon are analyzed IES (Integrated Environmental Solutions)6.0, Ecotect 2010, EnergyPlus v4.0's IWEC file and ISO-TRY, the Korean standard weather data provided by the Korean Solar Energy Society for direct normal radiation which is used in load calculation programs. The results show that the radiation of the programs is the same as that of direct normal radiation per month but has a mere difference, compared with the radiation per hour and IWEC has also 77.12% when compared with ISO-TRY, meaning that it could affect load values of buildings when applied to them. And in case of ISO-TRY, it could be judged that the application of test reference year applied by the data measured has higher reliability than IWEC file.

File System Design and Software Development for Correlation Result Analysis (상관결과 분석을 위한 파일 시스템 설계 및 소프트웨어 개발)

  • Oh, Se-Jin;Kan-ya, Yukitoshi;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Oh, Chung-Sik;Yun, Young-Joo;Jung, Jin-Seung;Jung, Dong-Kyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.181-190
    • /
    • 2013
  • In this paper, we designed file system in order to utilize data analysis by using correlation result from Daejeon correlator including related software development. Correlation results are consisted of visibility component (amplitude and phase) of radio source, but for data analysis of correlation result, various information such as weather, radio telescope position, observation time, radio source position, source type, and receiver noise temperature are needed. In this paper, we designed file system as a directory-structure for making use of these informations at Linux system for analyzing data and developed software to make file system. To verify the effectiveness of designed file system and developed software, file system generation experiment is conducted, and then astronomers accepted that there is no severe problem for scientific analysis using designed file system.

Implementation of a Display and Analysis Program to improve the Utilization of Radar Rainfall (레이더강우 자료 활용 증진을 위한 표출 및 분석 프로그램 구현)

  • Noh, Hui-Seong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1333-1339
    • /
    • 2018
  • Recently, as disasters caused by weather such as heavy rains have increased, interests in forecasting weather and disasters using radars have been increasing, and related studies have also been actively performed. As the Ministry of Environment(ME) has established and operated a radar network on a national scale, utilization of radars has been emphasized. However, persons in charge and researchers, who want to use the data from radars need to understand characteristics of the radar data and are also experiencing a lot of trials and errors when converting and calibrating the radar data from Universal Format(UF) files. Hence, this study developed a Radar Display and Analysis Program(RaDAP) based on Graphic User Interface(GUI) using the Java Programming Language in order for UF-type radar data to be generated in an ASCII-formatted image file and text file. The developed program can derive desired radar rainfall data and minimize the time required to perform its analysis. Therefore, it is expected that this program will contribute to enhancing the utilization of radar data in various fields.

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

Analysis of Building Energy using Automated Weather System Data (자동 기상관측 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kang, Dong-Bae;Lee, Kang-Yoel;Jung, Woo-Sik;Sim, Je-Hean;Yoon, Seong-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.493-502
    • /
    • 2014
  • EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. This program provides energy analysis of building and needs weather data for simulation. Weather data is available for over 2,000 locations in a file format that can be read by EnergyPlus. However, only five locations are avaliable in Korea. This study intends to use AWS data for having high spatial resolution to simulate building energy. The result of this study shows the possibility of using AWS data for energy simulation of building.

COMPONENT-BASED DEVELOPMENT OF OBSERVATIONAL SOFTWARE FOR KASI SOLAR IMAGING SPECTROGRAPH

  • Choi, Seong-Hwan;Kim, Yeon-Han;Moon, Yong-Jae;Choi, Kyung-Seok;Park, Young-Deuk;Jang, Bi-Ho;Kim, Su-Jin;Kim, Kap-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.463-470
    • /
    • 2005
  • In this paper, we have made the component-based development of observational software for KASI solar imaging spectrograph (KSIS) that is able to obtain three-dimensional imaging spectrograms by using a scanning mirror in front of the spectrograph slit. Since 2002, the KASI solar spectrograph has been successfully operated to observe solar spectra for a given slit region as well as to inspect the response functions of narrow band filters. To improve its capability, we have developed the KSIS that can perform sequential observations of solar spectra by simultaneously controlling the scanning mirror and the CCD camera via Visual C++. Main task of this paper is to introduce the development of the component-based software for KSIS. Each component of the software is reusable on the level of executable file instead of source code because the software was developed by using CBD (component-based development) methodology. The main advantage of such a component-based software is that key components such as image processing component and display component can be applied to other similar observational software without any modifications. Using this software, we have successfully obtained solar imaging spectra of an active region (AR 10708) including a small sunspot. Finally, we present solar $H{\alpha}$ spectra ($6562.81{\AA}$) that were obtained at an active region and a quiet region in order to confirm the validity of the developed KSIS and its software.

A Study on the Weather Support Service for Winter Sports (동계스포츠 맞춤형 기상지원 서비스를 위한 연구)

  • Back, Jin-Ho;Panday, Siddhartha Bikram;Lee, Ju-Sung;Kang, Hyo-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.1
    • /
    • pp.139-156
    • /
    • 2019
  • The purpose of this study was to provide a method to support customized weather and environmental information services for the successful operation of winter sporting events. First, individual in-depth interviews and surveys were conducted with athletes, coaching staffs and experts related to the competition for 10 different winter sports for analysis of their needs. We conducted face-to-face survey and survey considering the training schedule and situation of experts. The recorded voice file was converted into word text, and extracted the weather and environmental information elements embedded in the opinions of the research participants based on literature reviews and data. The findings are expected to provide basic data on the weather conditions required to support specialized weather information for future large winter sports events, including the PyeongChang Winter Olympics.