• 제목/요약/키워드: Weather Prediction

검색결과 895건 처리시간 0.032초

종관 관측 자료 변화에 따른 예보 성능 분석 (Analysis of Forecast Performance by Altered Conventional Observation Set)

  • 한현준;권인혁;강전호;전형욱;이시혜;임수정;김태훈
    • 대기
    • /
    • 제29권1호
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.

장기 기상전망이 댐 저수지 유입량 전망에 미치는 영향 분석 (An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction)

  • 김선호;남우성;배덕효
    • 한국수자원학회논문집
    • /
    • 제52권7호
    • /
    • pp.451-461
    • /
    • 2019
  • 장기 기상전망 기반 댐 유입량 전망은 가뭄 대비, 용수 공급 관리 등에 활용성이 높다. 본 연구에서는 국내 7개 다목적댐 유역에 대해 유입량 전망을 수행하고 장기 기상전망 정확도가 댐 유입량 전망 정확도에 미치는 영향을 분석하였다. 강우-유출 모델의 입력자료로 활용된 장기 기상전망 자료는 기상청 GloSea5의 과거재현자료(hindcast) 및 미래전망자료(forecast)를 활용하였다. 강우-유출 모델은 다양한 특성을 가지고 있는 TANK, ABCD, K-DRUM, PRMS를 활용하였다. 댐 유입량 전망 정확도는 과거재현기간(1996~2009)과 미래전망기간(2015~2016)에 대하여 평가하였다. 댐 유입량 전망 평가결과 전망값은 관측값에 비해 과소추정하는 경향을 보였으며, 매개변수 검보정이 적절히 수행된 강우-유출 모델은 댐 유입량 전망 정확도에 미치는 영향이 거의 없는 것으로 나타났다. 반면 장기 기상전망 자료, 특히 강수량은 댐 유입량 전망 정확도에 매우 큰 영향을 미치는 것으로 나타났다. 현업에서 댐 유입량 전망 자료 활용시 과소추정하는 경향을 고려하여 활용할 필요가 있다. 향후 댐 유입량 전망 정확도 개선은 강우-유출 모델 보다 장기 기상전망의 강수량 정확도 향상을 위주로 수행할 필요가 있다.

KWRF를 활용한 한반도 착빙 지수 특성 분석 (The Analysis of the characteristics of Korean peninsula Aircraft Icing Index using KWRF)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제18권3호
    • /
    • pp.42-54
    • /
    • 2010
  • The purpose of this study is to analyze the aircraft icing index of Korean peninsula using the numerical weather prediction model, KWRF and pilot weather report data. As comparing the pilot weather report data with the calculated icing index using the KWRF model result, SCLW, RAP, and AFGWC index are more useful than any other index, and IC2, NAWAU, and RSID index are different case by case. But IC1, SID1 and SID2 index show that these overestimated severe icing in every vertical level. Through this icing study, it is expected that this study will help to develop the proper icing index of Korean peninsula.

GME 모델을 이용한 태풍 모의 (Typhoon Simulation with GME Model)

  • 오재호
    • 한국가시화정보학회지
    • /
    • 제5권2호
    • /
    • pp.9-13
    • /
    • 2007
  • Typhoon simulation based on dynamical forecasting results is demonstrated by utilizing geodesic model GME (operational global numerical weather prediction model of German Weather Service). It is based on uniform icosahedral-hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral technique as well as the pole problem in latitude-longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. In this study we made an attempt to simulate typhoon 'NARI' that passed over the Korean Peninsula in 2007. GME has attributes of numerical weather prediction model and its high resolution can provide details on fine scale. High resolution of GME can play key role in the study of severe weather phenomenon such as typhoons. Simulation of future typhoon that is assumed to occur under the global warming situation shows that the life time of that typhoon will last for a longer time and the intensity will be extremely stronger.

Construction of Korean Space Weather Prediction Center: SCINTMON and All-Sky Camera

  • Kwak, Young-Sil;Hwang, Jung-A;Cho, Kyung-Suk;Bong, Su-Chan;Choi, Seong-Hwan;Park, Young-Deuk;Kyeong, Jae-Mann;Park, Yoon-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.33.1-33.1
    • /
    • 2008
  • As a part of the construction of Korean Space Weather Prediction Center (K-SWPC), Korea Astronomy and Space Science Institute (KASI) installed a Scintillation Monitor (SCINTMON) and an All-Sky Camera to observe upper atmospheric/ionospheric phenomena. The SCINTMON is installed in KASI building in Daejeon in cooperation with Cornell university and is monitoring the ionospheric scintillations on GPS L-band signals. All-Sky Camera is installed at Mt. Bohyun in Youngcheon in cooperation with Korea Polar Research Institute. It is used to take the photograph for upper atmospheric layer through appropriate filters with specific airglow or auroral emission wavelengths and to observe upper atmospheric disturbance, propagation of gravity wave and aurora. The integrated data from the instruments including SCINTMON and All-Sky Camera will be used for giving nowcast on the space weather and making confidential forecast based on some space weather prediction models.

  • PDF

제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구 (A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju)

  • 이영미;유명숙;최홍석;김용준;서영준
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

AWS 풍황데이터를 이용한 강원풍력발전단지 발전량 예측 (AEP Prediction of Gangwon Wind Farm using AWS Wind Data)

  • 우재균;김현기;김병민;유능수
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.119-122
    • /
    • 2011
  • AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.

  • PDF

빅데이터를 활용한 머신러닝 기반 태양에너지 발전량 예측 모델 (Implementation of machine learning-based prediction model for solar power generation)

  • 김종민;이준형
    • 융합보안논문지
    • /
    • 제22권2호
    • /
    • pp.99-104
    • /
    • 2022
  • 본 연구는 기후변화에 따른 전남 영암지역의 기상변화와 태양광 에너지 생산량의 빅데이터 분석을 통해 상관관계를 도출하여 태양광 에너지 생산 예측 모델을 제시하였다. 사용된 데이터는 공공데이터에서 제공하는 2016년 1월부터 2019년 12월까지의 영암지역의 날씨와 태양에너지 생산량 데이터를 사용하였다. 머신러닝 기법을 활용하여 기상변화와 태양광 에너지 생산량의 회귀분석을 통하여 지역의 날씨와 태양광 에너지 생산량과의 상관 관계식을 도출 하였다. 도출된 예측식을 적용하여 지역의 태양에너지 생산을 계산하였으며, 이를 생산지수로 표현하여 3단계로 구분하였다. 이 같이 구분된 3단계의 생산지수를 통해 향후 기후변화에 따른 태양에너지 생산량을 예측하고, 농업 활동에 있어 중요한 바로미터로 활용될 것이라 판단된다.

기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측 (Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image)

  • 김재정;유용훈;김창복
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.569-575
    • /
    • 2021
  • 딥러닝은 데이터의 품질과 모델에 따라 예측 성능에 차이를 보인다. 본 연구는 발전량 예측에 가장 영향을 주는 일사량 예측을 위한 최적의 딥러닝 모델을 구축하기 위해 다양한 입력 데이터와 다중 딥러닝 모델을 사용하였다. 입력 데이터는 기상청의 기상 데이터와 천리안 기상영상을 기상청 지역의 영상을 분할하여 사용하였다, 본 연구는 기본적인 딥러닝 모델인 DNN, LSTM, CNN 모델에 대해 중간층의 깊이와 노드를 변경하여 일사량을 예측하여, 비교 평가하였다, 또한, 각 모델에서 가장 좋은 오차율을 가진 모델을 연결한 다증 딥러닝 모델을 구축하여 일사량을 예측하였다. 실험 결과로서 다중 딥러닝 모델인 모델 A의 RMSE는 0.0637이며, 모델 B의 RMSE는 0.07062이며, 모델 C의 RMSE는 0.06052로서 단일 모델보다 모델 A 그리고 모델 C의 오차율이 좋았다. 본 연구는 실험을 통해 두 개 이상의 모델을 연결한 모델이 향상된 예측률과 안정된 학습 결과를 보였다.