• Title/Summary/Keyword: Weather Prediction

Search Result 895, Processing Time 0.035 seconds

Constructing Efficient Regional Hazardous Weather Prediction Models through Big Data Analysis

  • Lee, Jaedong;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • In this paper, we propose an approach that efficiently builds regional hazardous weather prediction models based on past weather data. Doing so requires finding the proper weather attributes that strongly affect hazardous weather for each region, and that requires a large number of experiments to build and test models with different attribute combinations for each kind of hazardous weather in each region. Using our proposed method, we reduce the number of experiments needed to find the correct weather attributes. Compared to the traditional method, our method decreases the number of experiments by about 45%, and the average prediction accuracy for all hazardous weather conditions and regions is 79.61%, which can help forecasters predict hazardous weather. The Korea Meteorological Administration currently uses the prediction models given in this paper.

A Numerical Weather Prediction System for Military Operation Based on PC cluster (작전기상 지원을 위한 PC 클러스터 기반의 기상수치예보시스템)

  • 이용희;장동언;안광득;조천호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.45-55
    • /
    • 2003
  • Weather conditions have played a vital role in a war. Many historical records reported that the miss use of weather information is the main reason of the lost a war. In this study we demonstrated the possibility of applying the numerical weather prediction system(NWPS) for military operations. The NWPS consists of PC-cluster as a super computer, data assimilation system ingesting many remote sensing observation, and graphic systems. High resolution prediction in NWPS can provide useful weather information such as wind, temperature, sea fog and so on for military operations.

Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea

  • Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-66
    • /
    • 2020
  • This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.

Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model (기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측)

  • Kwak, Young-Hoon;Cheon, Se-Hwan;Jang, Cheol-Yong;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

Role of Supercomputers in Numerical Prediction of Weather and Climate (기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할)

  • Park, Seon-Ki
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.

Numerical Weather Prediction and Forecast Application (수치모델링과 예보)

  • Woo-Jin Lee;Rae-Seol Park;In-Hyuk Kwon;Junghan Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.73-104
    • /
    • 2023
  • Over the past 60 years, Korean numerical weather prediction (NWP) has advanced rapidly with the collaborative effort between the science community and the operational modelling center. With an improved scientific understanding and the growth of information technology infrastructure, Korea is able to provide reliable and seamless weather forecast service, which can predict beyond a 10 days period. The application of NWP has expanded to support decision making in weather-sensitive sectors of society, exploiting both storm-scale high-impact weather forecasts in a very short range, and sub-seasonal climate predictions in an extended range. This article gives an approximate chronological account of the NWP over three periods separated by breakpoints in 1990 and 2005, in terms of dynamical core, physics, data assimilation, operational system, and forecast application. Challenges for future development of NWP are briefly discussed.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

Development of a Weather Prediction Device Using Transformer Models and IoT Techniques

  • Iyapo Kamoru Olarewaju;Kyung Ki Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.164-168
    • /
    • 2023
  • Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Numerical, Machine Learning and Deep-Learning based Framework for Weather Prediction

  • Bhagwati Sharan;Mohammad Husain;Mohammad Nadeem Ahmed;Anil Kumar Sagar;Arshad Ali;Ahmad Talha Siddiqui;Mohammad Rashid Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.63-76
    • /
    • 2024
  • Weather forecasting has become a very popular topic nowadays among researchers because of its various effects on global lives. It is a technique to predict the future, what is going to happen in the atmosphere by analyzing various available datasets such as rain, snow, cloud cover, temperature, moisture in the air, and wind speed with the help of our gained scientific knowledge i.e., several approaches and set of rules or we can say them as algorithms that are being used to analyze and predict the weather. Weather analysis and prediction are required to prevent nature from natural losses before it happens by using a Deep Learning Approach. This analysis and prediction are the most challenging task because of having multidimensional and nonlinear data. Several Deep Learning Approaches are available: Numerical Weather Prediction (NWP), needs a highly calculative mathematical equation to gain the present condition of the weather. Quantitative precipitation nowcasting (QPN), is also used for weather prediction. In this article, we have implemented and analyzed the various distinct techniques that are being used in data mining for weather prediction.