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Abstract

In this paper, we propose an approach that efficiently builds regional hazardous weather
prediction models based on past weather data. Doing so requires finding the proper weather
attributes that strongly affect hazardous weather for each region, and that requires a large
number of experiments to build and test models with different attribute combinations for
each kind of hazardous weather in each region. Using our proposed method, we reduce
the number of experiments needed to find the correct weather attributes. Compared to the
traditional method, our method decreases the number of experiments by about 45%, and the
average prediction accuracy for all hazardous weather conditions and regions is 79.61%, which
can help forecasters predict hazardous weather. The Korea Meteorological Administration

currently uses the prediction models given in this paper.
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1. Introduction

The accurate analysis and prediction of hazardous weather are closely related to real life and
can be used in various areas. Therefore, the creation of hazardous weather forecasting systems
and the related technologies have always been in demand [1-5]. However, it is difficult to
create an accurate hazardous weather forecasting system because the occurrence of hazardous
weather is influenced by regional characteristics, so similar meteorological conditions can
produce dramatically different weather on the ground in different places. Thus, to create an
accurate hazardous weather prediction system, separate prediction models need to be made for
each region.

Building regional hazardous weather prediction models requires selection of the weather
attributes that strongly affect hazardous weather for each region. Many researchers have used
data mining techniques to create hazardous weather prediction models based on past weather
data [6-19]. Most researchers simply used all available weather attributes without attribute
selection or attributes selected by experts [1, 3, 10, 11].

But using all available weather attributes has several disadvantages, most notably computa-
tional cost and system performance [6]. For example, the meteorological data of the European
Centre for Medium-Range Weather Forecast (ECMWF) contain 254 weather attributes. Us-
ing all the available weather attributes would require a large computational cost to build a
hazardous weather model for even one region [20]. Predicting 7 types of hazardous weather in
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16 regions would require 112 models (7 x 16), which represents
a huge computational cost. Also, using all available weather
attributes to build prediction models is ineffective. Because the
interactions among weather attributes are complex, the predic-
tion performance with all available attributes might not be better
than the performance with only some of the available attributes.
Considering weather attributes unrelated to hazardous weather
might not improve or could even deteriorate the performance of
the prediction models [21-23].

On the other hand, using weather attributes chosen by ex-
perts to make regional hazardous weather prediction models
will probably show the best performance and require less com-
putational cost. However, using experts to select the correct
weather attributes for 112 models is still a problem because it
requires a tremendous amount of expert knowledge.

Therefore, in this paper, we make regional hazardous weather
prediction models for each hazardous weather condition in
each region while minimizing the intervention of the experts.
Experts choose only 5 weather attributes and 3 isobaric surfaces
that can affect hazardous weather conditions, which results in
15 attributes. Using those 15 attributes, we find the optimal
combination of attributes to build regional hazardous weather
prediction models.

It remains difficult to select the most effective attributes from
15 candidates. If we limit our model to 3 attributes to mini-
mize the computational cost, we still have 575 candidate mod-
els to consider to find the optimal attribute combination for
each hazardous weather in each region: the number of single
attributes (15) plus the number of 2-weather-attribute combina-
tions (105) plus the number of 3-weather-attribute combinations
(455). To make prediction models for 7 types of hazardous
weather conditions (heavy rainfall, heat wave, strong winds,
wind waves, heavy snowfall, cold wave, and lightning) for 16 re-
gions (Seoul, Incheon, Gangneung, Chuncheon, Chungju, Dae-
jeon, Seosan, Daegu, Andong, Busan, Ulsan, Jeonju, Gwangju,
Yeosu, Mokpo, and Jeju). Thus, we would need to conduct
64,400 (16 regions x 575 candidates x 7 hazardous weather
conditions) experiments, and that is inefficient. Therefore, to
find the best weather attributes for each region and each type
of hazardous weather, we adopt a modified top-down attribute
selection method that allows us to reduce the number of experi-
ments.

We also need to consider the ratio of hazardous weather
conditions and non-hazardous weather conditions when con-
structing training and test data for the prediction models. Non-

hazardous weather conditions naturally outnumber hazardous
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weather conditions. However, if we use training data that reflect
the true ratio of non-hazardous to hazardous weather condi-
tions, the prediction models will be over-fitted to non-hazardous
weather conditions, which means they will deem all weather
conditions “non-hazardous” [24]. Consequently, we maintain
an equal ratio of hazardous and non-hazardous weather condi-
tions when constructing the training and test data sets.

Finally, we can make efficient regional hazardous weather
prediction models that minimize the intervention of experts
by using 10-year accumulated weather data. Our models are
currently used in the Korea Meteorological Administration to
aid forecasters in making decisions about potentially hazardous
weather.

The rest of this paper is organized as follows. Section 2
briefly describes previous research about weather prediction
using machine learning methods and its weaknesses compared
with our proposed method and provides a brief explanation
of the support vector machine (SVM) technique we used to
generate the prediction models in this paper. Section 3 describes
the weather data, hazardous weather, and regions we used in this
paper. Section 4 describes the details of our proposed method,
hazardous weather prediction using SVM. Section 5 shows our
experimental results. Section 6 summarizes the paper and offers

suggestions for future work.

2. Related Work

2.1 Previous Research

The use of machine learning methods to predict the weather
has been studied in various ways. Romani et al. [12] used time-
series weather data to extract a pattern and detected abnormal
weather. In that study, weather data were generated and ob-
served every week in terabytes. Because the authors used every
weather attribute to generate the prediction model, it had a high
computational cost that is inefficient. Efficiently generating a
regional hazardous weather prediction system requires studies
on the selection of weather attributes that well represent specific
types of hazardous weather for specific regions.

Olaiya and Adeyemo [8] used a decision tree and artificial
neural network method to predict daily maximum and mini-
mum temperature, rainfall, evaporation, and wind speed. He
conducted experiments that predicted the weather of a certain
region and compared his data mining method with the weather
forecasting numerical models that are widely used in the mete-
orological centers of many countries. Because the data mining
model is generated using all observed weather attributes, its
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calculation costs are high, and its performance is not guaran-
teed. If a prediction model is generated using efficient weather
attributes for the region, the computational cost can be reduced,
and the prediction accuracy can be increased.

Radhika and Shashi [10] conducted a study that used SVM
to predict the time series atmospheric temperature. They com-
pared predictions of the maximum temperature for the following
day from the SVM and artificial neural network methods. The
SVM method showed better results than the artificial neural
network, but they built their prediction model using only the
daily maximum temperature as input, which might not reflect
the optimal weather attributes for even a temperature prediction
model, much less a hazardous weather prediction model.

Nayak et al. [25] used an enhanced approach to the arti-
ficial neural network method to predict the daily maximum
temperature. Through a comparison of results from other ma-
chine learning methods, they proved that their method offered
higher performance. They used 8 weather attributes selected by
experts, including temperature, wind speed, and relative humid-
ity. However, they did not analyze how each weather attribute
affected the prediction of daily temperature. If they had ana-
lyzed each weather attribute and used those results as the input
for their prediction model instead of just using all 8 weather
attributes, their prediction model would be more efficient in
forecasting the daily maximum temperature.

Nikam and Meshram [7] used data mining techniques for
modeling rainfall prediction. Out of 36 weather attributes they
used 7 attributes as input of model with the decision that the
other weather attributes are less relevant. They also did not
analyze the information amount of each weather attribute to
identify regional characteristics.

As just described, data mining methods have been used in
different ways to conduct studies on climate forecasting, but
few studies have been associated with regional climate forecast-
ing. In particular, practically no studies have sought the weather
attributes needed to make a hazardous weather prediction sys-
tem that considers regional characteristics. Hazardous weather
can affect different regions differently even if they share simi-
lar weather conditions. Therefore, a consideration of regional
characteristics is important to select the right weather attributes
when making a regional hazardous weather prediction model.
For this paper, we asked experts to delineate several regions
according to the importance of the region and frequency of each
type of hazardous weather. We also conducted experiments to
determine whether a certain climate affected a particular type
of hazardous weather in a region. We used SVM, described in
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Figure 1. How support vector machine works.

the following sub-section, to build the prediction model.

2.2 Support Vector Machine

SVM is known to outperform other classification techniques.
SVM sets a hyperplane that fully classifies the training set
containing two classes with different values.

Figure 1 shows the classification by drawing in a hyperplane
between two data with different properties. Black dots and
white dots represent the data with two different properties, and
a hyperplane is set between the different data. Here in these
two data sets, the nearest point from the hyperplane is called
the support vector, and the distance between the support vector
and the hyperplane is called the margin. It is best to maximize
the distance between the hyperplane and support vector for the
best classification.

It is almost impossible to separate the data linearly in most
cases, but those problems can be solved using a kernel. A kernel
maps the low-dimensional input data into a high dimensional
space to solve the nonlinearity problem. SVM seeks a linear
separating hyperplane with the maximal margin in this higher
dimensional space. The kernel function is defined as Eq. (T)
shown below.

The so-called kernel method solves the nonlinearity problem
by linearizing the data through high dimensional mapping, and
that solves the problem of increasing computational complexity.
In this paper, we configure the SVM with each attribute of
each isobaric surface. The SVM predicts weather data as, for
example, heavy rain or not heavy rain, and judges how much
effect each attribute will have in predicting heavy rain or not
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heavy rain. We implemented the binary classification in every
experiment using SVM through the SVM Light tool, and we
used the radial basis function kernel.

3. Weather Data, Hazardous Weather, and Re-
gion Description

In this section, we describe the characteristics of the weather
data, criteria of hazardous weather, and regions we used, along
with the weather attributes, isobaric surfaces, and ranges of
weather data. We use the same criteria of hazardous weather
that are used for a special weather statement from the Korea
Meteorological Administration. An expert selected several
regions where hazardous weather predictions are especially
important. In each region, hazardous weather not only occurs
frequently but also has a social and economic influence.

3.1 Weather Data

We use UM N512 meteorological data generated using ECMWEF
1.125 degree data. The data consist of 254 weather attributes
and 7 isobaric surfaces: 200, 300, 500, 700, 850, 925, and 1000
hPa. UM N512 data consist of 228 x257 grids representing the
Eastern Asia, for a total of 410,172 (228 x257x7) grids. Each
grid includes 254 weather attribute values measured in the cor-
responding isobaric surface and spot. The total number of differ-
ent values in a weather map is 102,812,850 (228 X257 x7x254).
The data are produced every 6 hours (00:00, 06:00, 12:00, 18:00
UTO).

A prediction model can be built based on accumulated val-
ues from the past. Because the UM N512 data set is huge
with a large number of attributes, it is inefficient to use all the
attributes, and most attributes do not affect meteorological anal-
ysis anyway. Therefore, in this study, we use five attributes
chosen by experts as empirically known to be effective in the
prediction of hazardous weather. The five attributes are Height
(Z), Humidity (R), Temperature (T'), Uwind (U), and Vwind
(V). The meaning of each attribute is shown in Table 1.

In addition, using all isobaric surfaces to generate a prediction
model creates an issue of low accuracy. We use only the isobaric
surfaces of 500, 700, and 850 hPa and exclude those of 200,
300, 925, and 1000 hPa. The isobaric surfaces of 1000 and 925
hPa are too close to the ground and can produce unstable data.
The isobaric surfaces of 200 and 300 hPa are too far from the
ground, so they show little effect on weather prediction.

www.ijfis.org

Table 1. The definition of each weather attribute

Attributes Definition

Height

Vertical coordinate referenced to earth’s mean
sea level

Humidity Amount of water vapor in a mixture of air
and water vapor

Temperature Temperature of the air
Uwind East-west component of the wind
Vwind North-south component of the wind

&
s
S 7

Figure 2. Range of area used in experiments: square A, 3030 grid;
square B, 4040 grid.

3.2 Hazardous Weather and Region

In the UM N512 data, the Eastern Asian region is expressed
using a 228 x257 grid. Forecasting hazardous weather on the
Korean Peninsula using all the weather data from the entire
region is still cost-prohibitive. Moreover, including unnecessary
regional weather data will adversely affect the predictions. For
a more efficient experiment to predict hazardous weather on the
Korean Peninsula, we limited our experimental data to the areas
surrounding the Peninsula. We considered the movement of air
to determine the area. We use an area of 30x30, square A in
Figure 2, for the 6 hour forecast and an area of 40x40, square
B in Figure 2, for the 24 hour forecast.

Constructing Efficient Regional Hazardous Weather Prediction Models through Big Data Analysis | 4
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Prediction of hazardous weather shows regional peculiarities
even under similar meteorological conditions, which makes it
difficult to accurately predict hazardous weather for all regions
using a single model. Therefore, characteristics that affect a
given region’s hazardous weather must be identified and used to
generate a prediction model for each region and each hazardous
weather type.

For this paper, we choose several metropolitan areas on the
Korean Peninsula where hazardous weather occurs frequently
and build hazardous weather prediction models for each region.
We choose metropolitan areas that need a hazardous weather
prediction model by taking into account the importance of the
regions. Regions with many people experience more bad in-
fluence from hazardous weather than other regions. We also
consider the number of hazardous weather occurrences and their
frequency. We select 16 metropolitan areas chosen by experts
to predict heavy rainfall, lightning, heat wave, and heavy snow-
fall: Seoul, Incheon, Gangneung, Chuncheon, Chungju, Dae-
jeon, Seosan, Daegu, Andong, Busan, Ulsan, Jeonju, Gwangju,
Yeosu, Mokpo, and Jeju. We select 14 metropolitan areas, ex-
cluding Mokpo and Jeju, to predict cold waves; 4 metropolitan
areas, Busan, Yeosu, Mokpo, and Jeju, to predict strong wind;
and 4 regions, Deokjeokdo, Chilbaldo, Geomundo, and Geo-
jedo for wind waves.

We use the following criteria for hazardous weather in this
study. They are the same as the criteria used for special weather
statements from the Korea Meteorological Administration.

- Heavy rainfall: 60 mm of accumulated rainfall or more
over a 6 hour period

- Heat wave: Daily maximum temperature of 33°C or more
- Strong winds: Wind speed of 14 m/s or more
- Wind waves: Wave height of 3 m or higher

- Heavy snowfall: 5 cm or more of accumulated snow over
a 24 hour period

- Cold wave: A drop of 10° or more from the previous day

- Lightning: Occurrence

We use 6 hour prediction systems for heavy rainfall, strong
winds, wind waves, heavy snowfall, and lightning. For heat
and cold waves, we use a 24 hour prediction system because
we need daily information to determine whether the hazardous
weather has occurred.
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4. Prediction Model Construction with Modi-
fied Top-Down Method

In this section, we describe how to select attributes and compose
the training data set to efficiently build prediction models using
SVM. We modify the top-down attribute selection method to
choose proper weather attributes with fewer computational re-
sources than required by the traditional method. To build SVM
models, we down-sample non-hazardous weather data to be
equal to hazardous weather data in occurrence for the training
data sets to prevent the SVM models from being over-fitted.
Finally, we build optimal regional hazardous weather prediction
models.

4.1 Modified Top-Down Weather Attributes Selection
Method

In this paper, we use the five weather attributes and three
isobaric surfaces selected by experts for effective hazardous
weather prediction. Thus, overall we have 15 attributes (5
weather attributes x 3 isobaric surfaces) that can be used to
generate each prediction model, which is still an overwhelming
number of possible models, as explained above. Therefore, we
use a modified top-down attribute selection method to choose
the best attributes for a prediction model with high prediction
accuracy.

For n single attributes and k attributes combined at maxi-
mum, the steps to build prediction models for a given type of
hazardous weather in a given region with the modified top-down
method are shown in Algorithm 1.

In this paper, we combine a maximum of 3 attributes (k = 3)
to reduce computational cost. To determine the best-performing
attributes for a given type of hazardous weather in a specific
region, we first make 15 prediction models with 15 attributes
(5 attributes x 3 isobaric surfaces). Then, we select the 3 best
single attributes by their prediction performances. Next, we
combine those 3 best attributes as follows: the best and second
best attributes (A; + Asz), the best and third best attributes
(A; + Aj), the second and third best attributes (As + As), and
all three attributes (4; + As + A3). Finally, we select the
model that has the best performance among the single attribute
models and the combined attribute models. Using this modified
approach, we use a total of 19 prediction models to find the
final prediction model for a specific type of hazardous weather
in a specific region. The traditional top-down method for all
attributes requires 42 prediction models to choose the 3 best
attributes. Not only does our method require fewer experiments
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Algorithm 1 Steps to build prediction models

1: For a specific region and a specific type of hazardous
weather, make n prediction models using n single at-
tributes

2: Get prediction results for n single attributes and select &
best attributes. Call the i-th best attribute “A;”

3: Combine two attributes in the & attributes. For example,
combine A; and Ay(A; + Az), Ay and A3(A; + A3), ...
,and Ag_1 and Ap(Ak_1 + Ag) to obtain k(k — 1)/2
combinations

4: Get prediction results from k(k — 1)/2, two-attribute mod-
els and select k best attribute combinations. Call the i-th
best attribute combination “C;”

5: Generate three-attribute combinations by adding A; to
Cj’S

6: Get prediction results from the three-attribute models and
select k best combinations. Call the i-th best attribute
combination “C;”

7: Repeat steps 5 and 6 by increasing the number of attributes
to be combined until an n-attribute combination has been
created

8: Choose the best model among the single attribute models
and all the combined attribute models. If more than two
models show the same performance, choose the one with
the smallest number of attributes

than the traditional top-down method, it also combines attributes
Ag and Ajs, which the traditional method does not do. Using our
modified top-down attribute selection method, we need only try
2,128 combinations of 64,400 possible combinations to build
optimal prediction models for 7 types of hazardous weather in
each of 16 regions.

Minimizing the need for intervention by experts, we find
hazardous weather prediction models for each region and each
hazardous weather condition using the modified top-down se-
lection method. Experts just chose 5 weather attributes and 3
isobaric surfaces that can affect hazardous weather conditions;
our modified top-down attribute selection method uses those
choices efficiently to make regional hazardous weather predic-
tion models. In the next section, we explain how we evaluate

our prediction models with weather data using SVMs.

4.2 SVM Adaptation to Weather Data

We use meteorological data from 2002 to 2011 in our hazardous
weather predicting experiments. For 6 hour prediction, we use
6 hours of past data before the current time to predict whether
hazardous weather occurs. The number of hazardous weather
conditions varies by region, so for each region we choose a
number of non-hazardous weather conditions to maintain an
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Table 2. True-false table

Positive Negative
True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)

equal ratio with the number of hazardous weather conditions
[24]. Because the hazardous weather cases depend strongly
on the seasons, we choose the same number of non-hazardous
weather cases in a month. For example, given 5 cases of heavy
rain in October 2004, we choose 5 non-heavy rain cases for the
same time period. If we do not maintain the ratio between haz-
ardous and non-hazardous weather conditions, the prediction
model becomes over-fitted and predicts all weather conditions
as non-hazardous.

Thus, we make training and test data for the SVMs maintain-
ing a balance between hazardous and non-hazardous weather
conditions. We verify the performance of each SVM using
the k-fold cross validation method with k& = 5 based on the
collected data. Cross validation is a prediction model validation
technique for assessing how the results of a statistical analysis
will generalize to an independent data set.

We use Accuracy as the evaluation index based on the true-
false table shown in Table 2. Accuracy indicates how often a
prediction model predicts correctly.

The evaluation indexes are defined as Eq. (2) shown below:

Accuracy = (TP + FN)/(TP+TN + FP+ FN). (2)

TP (True positive): Model predicted the occurrence of haz-
ardous weather, and hazardous weather occurred

TN (True negative): Model predicted the non-occurrence of

hazardous weather, and hazardous weather did not occur

FP (False positive): Model predicted the occurrence of haz-

ardous weather, and hazardous weather did not occur

FN (False negative): Model predicted the non-occurrence of

hazardous weather and hazardous weather did occur

5. Experimental Results

We used the following data in the experiments: five attributes,
Height (Z), Humidity (R), Temperature (T'), Uwind (U), and
Vwind (V'), and three isobaric surfaces, 500, 700, and 850 hPa,
for each type of hazardous weather and region.

Tables 3 and 4 show the prediction accuracy for heavy rainfall

Constructing Efficient Regional Hazardous Weather Prediction Models through Big Data Analysis | 6
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and heavy snowfall. The prediction results for the other haz-
ardous weather conditions are summarized in Table 5. Tables
3 and 4 consist of Region, Attributes, A1, A1 + As, A1 + As,
Ag + Az, and Ay + As + As columns. Region represents
the area for which the hazardous weather prediction is made,
and Aftributes represents the three attributes with their isobaric
surfaces selected in Step 2 of the modified top-down attribute
selection method in Algorithm 1. For example, V(850), V(700),
and R(500) are selected for prediction of heavy rainfall at Seoul.
V(850) means Vwind at 850 hPa; V(700) is Vwind at 700 hPa;
and R(500) is Humidity at 500 hPa. The first attribute in the Az-
tribute column is A1, the second is As, and the third is A3. The
columns of Ay, Ay + A, A1+ A3z, Ag+ Az, and Ay + Ay + As
indicate the accuracies of the models built with the correspond-
ing attributes. We choose the best results, marked in bold, as
the final prediction models. If the prediction performance of
two models is the same, we choose the model with the fewest
weather attributes.

For heavy rainfall prediction, the models with a single
weather attribute show the best performance in 12 regions; the
models with 2 weather attributes are the best for 3 regions; and
the model with 3 weather attributes is the best in only 1 region.
Vwind at 700 hPa is used 6 times, so Vwind can be considered
an effective weather attribute to predict heavy rainfall. The
average accuracy of the prediction results across the 16 regions
is 79.04%.

In Table 4, on heavy snowfall prediction, single-attribute
models show the best performance for only 3 regions, whereas
2-attribute models are best for 6 regions, and 3-attribute models
are best for 7 regions. Unlike the heavy rainfall prediction
models, the heavy snowfall prediction models are mostly made
by combining weather attributes. Vwind at 850 hPa is used 9
times, and Uwind and Vwind at 700 hPa are used 5 times each.
Thus, the winds have a greater effect than the other weather
attributes when making prediction models for heavy snowfall.
The average prediction performance across the 16 regions is
78.86%.

We summarize the results of all the prediction models for
the rest of the hazardous weather conditions in each region in
Table 5. Table 5 contains the best result attributes and accuracy
values. For example, Uwind at 500 hPa, U(500), shows the
best prediction result at Seoul for heat wave prediction, and
its prediction accuracy is 84.83%, whereas the combination
of Vwind at 850 hpa, V(850), Vwind at 700 hPa, V(700), and
Uwind at 850 hPa U(850) show the best prediction result for
lightning at Seoul. Except for wind waves prediction, 3 weather
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attributes (Uwind, Vwind, Humidity) are used most often to
predict most hazardous weathers in most regions.

Table 6 represents the effectiveness of each weather attribute
in predicting hazardous weather. As shown in Table 6, attributes
tend to be selected more often as they approach the ground.
Thus, weather attributes close to the ground can be considered
effective for predicting hazardous weather. Temperature and
Height are rarely used to make prediction models. Temperature
isused only 1 time, and Height is used 6 times. However, Height
is mostly used when predicting wind waves, which means that
Height is the most effective weather attribute when building
wind wave prediction models.

Table 7 compares the average results of the single-attribute
models, combined-attribute models, and final selected models
for all hazardous weather conditions. If the prediction models
are made using only the best attribute, the average accuracy for
all hazardous weather conditions is 73.60%. The combined-
attribute models show performance almost equal to or lower
than the single-attribute models on average. However, using
the modified top-down selection method, we can achieve an
accuracy of 79.61%, an improvement of about 8% over the best
single-attribute models.

Table 8 shows our analysis of all hazardous prediction mod-
els: the number of the final models together with their attributes.
For example, in the case of heavy rainfall, the final models for
11 regions have a single attribute (A;), and the final models
for the other 5 regions have combined attributes. We build 86
hazardous prediction models in total. Among them, 36 models
have a single attribute, 34 models have two attributes (A; + Ao,
A1 + Az or Ay + A3), and 16 models have three attributes.
Seven models use A, and Ag, which the traditional top-down
selection method cannot find.

To select the final models for the 7 types of hazardous weather
for all regions, we build and evaluate 1,634 models (7 hazardous
weathers x 4-16 regions x 19 candidate models), whereas
the traditional top-down attribute selection method requires
3,612 experiments (7 hazardous weathers x 4—16 regions x 42
candidate models). Our proposed method decreases the number
of models by about 45% compared to the traditional top-down
attribute selection method.

To summarize, we select optimal weather attributes to effi-
ciently build regional hazardous weather prediction models with
fewer experiments than required by the traditional method. The
average prediction result is 79.61% for all prediction models,
and that result can help forecasters decide whether hazardous

weather will occur for their region.
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Table 3. Prediction results for heavy rainfall (unit, %)

Region Attributes Ay A+ Ay A+ As Ay + Az A+ Ay + As
Seoul V(850), V(700), R(500) 87.39 86.59 77.39 77.39 76.56
Jeju R(500), R(700), U(850) 70.50 75.75 73.17 66.75 75.75

Gangneung  V(850), R(500), V(700) 74.97 71.76 72.75 71.76 72.87

Gwangju R(700), R(500), V(850) 72.55 77.06 73.73 69.02 77.06
Daegu V(500), R(500), V(700) 85.71 83.21 85.71 83.21 83.21

Daejeon V(700), V(850), V(500) 80.00 80.00 76.00 78.00 80.00

Mokpo V(850), R(700), V(500) 77.12 78.49 73.79 75.00 80.30
Busan R(700), V(700), V(500) 82.35 82.32 81.48 80.58 82.32

Andong T(700), T(500), V(700) 53.33 53.33 42.67 42.67 42.67
Yeosu V(700), V(850), V(500) 90.00 90.00 86.25 83.75 86.25
Ulsan V(700), V(850), V(500) 81.03 77.82 81.16 82.57 81.03

Incheon V(700), R(500), V(850) 80.76 71.52 79.43 72.86 71.52
Jeonju V(850), V(700), U(700) 74.73 71.27 67.09 67.27 69.27

Chuncheon  V(700), V(500), V(850) 85.81 83.46 83.46 83.46 83.38

Chungju R(500), V(700), V(850) 80.15 78.34 78.34 78.49 78.34

Seosan V(700), V(850), R(500) 73.74 73.74 70.59 70.59 70.59

Table 4. Prediction results for heavy snowfall (unit, %)

Region Attributes Ay A+ A, A+ As A, + Aj A+ Ay + Ajg
Seoul R(700), V(850), T(700) 58.02 73.00 46.08 46.08 42.64
Jeju V(700), V(500), U(850) 86.66 80.00 66.67 80.00 86.67

Gangneung  V(850), R(700), U(850) 71.00 76.99 79.57 74.39 74.36
Gwangju V(700), V(850), R(850) 78.40 85.08 80.84 81.16 81.82

Daegu R(850), V(500), U(500) 45.00 13.33 13.33 13.33 36.66

Daejeon V(700), V(850), U(850) 76.91 78.89 70.00 72.22 73.33

Mokpo U(500), R(850), R(500) 75.76 83.89 75.00 81.11 86.66
Busan V(850), U(700), R(500) 100.0 86.67 20.00 26.67 63.33

Andong R(700), R(850), U(700) 82.00 81.82 83.64 81.82 85.60
Yeosu V(850), V(700), V(500) 100.0 100.00 100.00 100.00 100.00
Ulsan V(850), R(700), R(500) 86.66 100.00 33.33 73.33 21.66

Incheon R(500), U(500), V(500) 46.66 66.15 67.69 53.84 50.64

Jeonju U(700), V(700), U(500) 74.16 81.31 79.70 79.16 81.67

Chuncheon  R(700), R(500), U(700) 59.60 76.81 79.09 63.96 81.19

Chungju V(850), U(700), V(700) 61.11 68.97 73.60 73.75 75.22

Seosan R(850), V(850), U(700) 73.02 79.05 79.05 70.95 79.66

6. Conclusion

We proposed a modified top-down method to find the opti-

mal weather attributes to efficiently build regional hazardous

www.ijfis.org Constructing Efficient Regional Hazardous Weather Prediction Models through Big Data Analysis | 8
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Table 5. Prediction results for 5 hazardous weather conditions (unit, %)

Region Heat wave Lightning Cold wave Strong winds Wind waves
Seoul U(500) V(850), V(700), U(700) - -
U(850)
84.83 76.84 80.66
Jeju U(850) V(850), V(700) - V(700), V(500), -
Z(700)
69.17 68.02 79.92
Gangneung U(700) V(850) V(850) - -
75.01 64.05 76.66
Gwangju U(500), U(700) V(700) V(850) - -
76.55 63.84 60.00
Daegu U (500) R(700), R(500), V(700) - -
R(850)
76.45 73.05 40.00
Daejeon U(850), U(700) U(850), R(850) V(850) - -
79.29 75.75 71.40
Mokpo U(700), U(500) R(700), U(850), - V(850), V(700) -
R(850)
88.00 74.72 88.02
Busan U(500) V(850), U(850) U(500) U(850), V(500) -
84.28 73.43 80.00 91.43
Andong U(500), V(850) R(700), U(700) R(700), V(700), - -
V(500)
81.54 72.97 69.77
Yeosu R(850) V(850), U(700) V(700), V(500) V(850), V(700), -
V(500)
50.00 77.92 80.00 88.92
Ulsan U(700), U(850) R(700), U(850) R(700) - -
79.20 70.03 73.33
Incheon U(700) V(700), V(850), U(500) - -
U(850)
90.00 79.19 69.72
Jeonju U(500) V(850), U(850) V(700), U(850) - -
82.37 74.19 62.67
Chuncheon  U(500), U(850) U(850), V(850) V(850), R(850) - -
77.40 72.30 78.67
Chungju U(500), U(850) U(850), V(850) R(850), V(850) - -
81.59 75.64 77.40
Seosan U(700), U(850) V(850), U(850) R(500) - -
86.00 76.23 73.50
Geomundo - - - - Z(850)
85.71
Geojedo - - - - Z(500)
85.71
Deokjeokdo - - - - Z(850), Z(700),
Z(500)
78.06
Chilbaldo - - - - V(700), V(850)
97.42
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Table 6. Effectiveness of each weather attribute

V(850) V(700) V(500) U(850) U(700) U(500) R(850) R(700) R(500) T(850) T(700) T(500) Z(850) Z(700) Z(500)

Heavy 5 5 3 4 3 1
rainfall
Heat wave 1 6 7
Heavy 9 5 2 2 5 2 4 4 3
snowfall
Lightning 10 4 10 2 4 1
Cold wave 5 4 2 1 1 2 2 2 1
Strong 2 3 3 1 1
winds
Wind 1 1 2 1 2
waves
Total 33 23 10 20 15 13 10 14 8 0 1 0 2 2 2
Table 7. Comparison results between single- and combined-attribute models (unit, %)
Avg. of Aq Avg. of Avg. of Avg. of Avg. of Avg. of final
A+ A A+ Ay As + Aj A+ A+ Ay
Heavy rainfall 78.13 77.17 75.19 73.96 75.70 79.04
Heat wave 77.02 73.19 73.13 72.81 71.94 78.86
Heavy snowfall 73.44 77.00 65.47 66.99 70.07 81.62
Lightning 67.70 70.41 70.09 69.65 71.65 73.01
Cold wave 67.39 55.33 55.11 49.03 49.98 70.98
Strong winds 74.39 81.23 83.10 81.31 82.22 87.07
Wind waves 77.14 79.06 79.06 79.06 79.21 86.73
Average 73.60 73.64 71.59 70.40 71.54 79.61
Table 8. Analysis of final selected models
Hazardous No. of A; No. of No. of No. of No. of Total no. of
weather Al aE A2 Al aE A3 A2 aE A3 Al aE A2 aE A3 models
Heavy rainfall 11 2 1 1 1 16
Heat wave 1 4 3 0 16
Heavy snowfall 3 4 2 0 7 16
Lightning 2 4 3 3 4 16
Cold wave 10 3 0 0 1 14
Strong winds 0 1 1 0 2 4
Wind waves 2 1 0 0 1 4
Total 36 16 11 7 16 86

weather prediction models. Our proposed method reduced the
number of experiments by 45% compared with the traditional
top-down attribute selection method. Not only did we decrease
the number of experiments, but we also obtained competitive
performance from our prediction models. The average perfor-

www.ijfis.org Constructing Efficient

mance for the 7 types of hazardous weather in all regions is
79.61%, so the prediction models can help forecasters decide
whether hazardous weather will occur. The prediction models in
this paper are currently being used by the Korea Meteorological
Administration to predict hazardous weather.
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