• Title/Summary/Keyword: Wearable devices

Search Result 577, Processing Time 0.032 seconds

High Performance Wearable/Flexible Energy Storage Devices Based on Ultrathin $Ni(OH)_2$ Coated ZnO Nanowires

  • Shakir, Imran;Park, Jong-Jin;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.597-597
    • /
    • 2012
  • A simple solution-based method is developed to deposit crystalline ultrathin (2 nm) nickel hydroxide on vertically grown ZnO nanowires to achieve high specific capacitance and long-term life for flexible and wearable energy storage devices. Ultrathin crystalline $Ni(OH)_2$ enables fast and reversible redox reaction to improve the specific capacitance by utilizing maximum number of active sites for the redox reaction while vertically grown ZnO nanowires on wearable textile fiber effectively transport electrolytes and shorten the ion diffusion path. Under the highly flexible state $Ni(OH)_2$ coated ZnO nanowires electrode shows a high specific capacitance of 2150 F/g (based on pristine $Ni(OH)_2$ in 1 M LiOH aqueous solution with negligible decrease in specific capacitance after 1000 cycles. The synthesized energy-storage electrodes are easy-to-assemble which can provide unprecedented design ingenuity for a variety of wearable and flexible electronic devices.

  • PDF

Modular platform techniques for multi-sensor/communication of wearable devices (웨어러블 디바이스를 위한 다중 센서/통신용 모듈형 플랫폼 기술)

  • Park, Sung Hoon;Kim, Ju Eon;Yoon, Dong-Hyun;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.185-194
    • /
    • 2017
  • In this paper, a modular platform for wearable devices is proposed which can be easily assembled by exchanging functions according to various field and environment conditions. The proposed modular platform consists of a 32-bit RISC CPU, a 32-bit symmetric multi-core processor, and a 16-bit DSP. It also includes a plug & play features which can quickly respond to various environments. The sensing and communication modules are connected in the form of a chain. This work is implemented in a standard 130 nm CMOS technology and the proposed modular wearable platforms are verified with temperature and humidity sensors.

Development of Wearable Devices Equipped with Multi Sensor that can Analyze and Manage Symptoms of Parkinson's Patients as data (파킨슨 환자의 증상들을 데이터화하여 분석하고 관리할 수 있는 다양한 센서가 탑재된 웨어러블 디바이스 개발)

  • Kim, SangHyeok;Jeon, YeongJun;Kang, SoonJu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2022
  • Through the development and dissemination of embedded devices, studies that may help patients are rapidly emerging. Recently, as wearable devices have become one of the ways to diagnose diseases in daily life, they are being studied as a way to assist severely ill patients to lead their daily lives. Among them, a method of detecting and giving signals to detect and solve symptoms using acceleration sensors to diagnose Parkinson's disease is being studied, and there is no study to measure and analyze various factors that can affect Parkinson's disease. To solve them, we designed and developed a wearable device, P-Band, with various sensors capable of diagnosing related symptoms, including acceleration sensors capable of diagnosing Parkinson's disease. In this paper, the overall structure of the P-Band and the description and operation method of the measurable sensors are presented. In addition, it was confirmed that the symptoms of Parkinson's patients could be determined complexly through the results measured in actual patients.

Wearable System for Real-time Monitoring of Multiple Vital Signs (인체 착용형 다중 생체신호 실시간 모니터링 시스템)

  • Lee, Young-Dong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.249-252
    • /
    • 2008
  • A wearable ubiquitous health care monitoring system using integrated ECG and accelerometersensors based on WSN is designed and developed. Wireless sensor network technology is applied for non intrusive healthcare in some wide area coverage with small battery support for RF transmission. We developed wearable devices which are wearable USN node, sensor board and base-station. Low power operating ECG and accelerometer sensor board was integrated to wearable USN node for user's health monitoring. The wearable ubiquitous healthcare monitoring system allows physiological data to be transmitted in wireless sensor network from on body wearable sensor devices to a base-station connected to server PC using IEEE 802.15.4. Physiological data displays and stores on server PC continuously.

  • PDF

A Design of Authentication Method for Secure Communication based on Wearable Device (웨어러블 디바이스 기반의 안전한 통신을 위한 인증기법 설계)

  • Park, Jung-Oh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.41-46
    • /
    • 2016
  • Recently, many domestic and foreign corporates are concentrating in investment to wearable devices and users are provided with various service based on wearable devices 26% more than compared to last year. It is widely used in previous healthcare, smart work, smart home environment, and it is now introduced to get connection to fused service environment. However, as products of G company are commercialized, the security issue of personal information is causing dispute in society, and the danger of data management and security regarding telecommunication is increasing. Also, because the password system used in previous wireless environment is still in use, there are possible vulnerability considering the new and mutant security threat. This thesis conducted study about protocols that can exercise safe telecommunication in the basis of wearable devices. In the registration and certification process, the signature value is created based on the code value. The telecommunication method is designed to conduct safe telecommunication based on the signature value. As for the attack method occurring in the wearable device environment, the safety was analyzed and conducted performance evaluation of previous password system and proposal system, and verified about 14% of efficiency.

A Study on the Effect of Individual Characteristics on Acceptance Intention of Wearable Healthcare Devices: Focusing on the UTAUT2 and Innovativeness

  • Jin, Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.129-143
    • /
    • 2020
  • The purpose of this study is to explain users' wearable healthcare device adoption using performance expectancy, effort expectancy, facilitating condition, hedonic motivation and price value of UTAUT2, and to identify the causal relationship between intention to use wearable healthcare device and innovativeness. The research model proposed in this study is based on UTAUT2(Extended Unified Theory of Acceptance and Use of Technology). In specific, performance expectancy, effort expectancy, facilitating condition, hedonic motivation and price value of UTAUT2 and innovativeness are adopted in our research model. To validate the research model, we carry out the analysis of the survey data using Smart PLS 3.0 to test the hypotheses. According to the empirical analysis results, this study confirms that Innovativeness have significant effects on the performance expectancy, effort expectancy, Facilitating condition, Hedonic motivation, and price Value of wearable healthcare devices. It also finds that the performance expectancy, effort expectancy, Facilitating condition, hedonic motivation, and price value affects the intention to use wearable healthcare devices.

A Study on the game app production utilizing wearable smart device health care information (웨어러블 스마트 디바이스의 헬스 케어 정보를 활용한 게임 앱 제작에 관한 연구)

  • Choi, Yong-Seok;Ju, Woo-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.168-169
    • /
    • 2015
  • Recent wearable smart device products, but with a variety of features and form that go out after a series of releases in has been outside for a lack of consumer content. The device advances, the type of equipment attached to the user's body was released, which was the background to be subjected to a health-care products of interest to the user and the machine-to-machine interaction. This study is to identify health care elements wearable smart device content around the market with features to interact with the game content and game content derived elements fit smart wearable devices. Survey research method was developed or released wearable devices and game content and take advantage of this any existing research literature related to game development. Based on this we derive the interactive elements for a wearable smart devices based.

  • PDF

Correlation Between Physical Activity Measured by a Wearable Device and Quality of Life in Older Adults

  • Kim, Si-hyun
    • Physical Therapy Korea
    • /
    • v.28 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • Background: Physical activity and quality of life (QOL) influence the health status of older adults. Recently, the use of wearable devices to monitor physical activity has increased. Objects: This study examined the relationship between the amount of physical activity, measured using a wearable device, and QOL among older adults. Methods: In total, 71 older adults (aged ≥ 65 years) were enrolled. The amount of physical activity was measured using a wearable device with a wrist strap, and daily physical activity was classified according to intensity (sedentary, light, moderate, or very active). Self-reported QOL was evaluated using the Short Form 36 (SF-36) questionnaire. Pearson and Spearman correlation analyses were conducted to analyze parametric and non-parametric variables, respectively. The relationship between amount of daily physical activity and SF-36 scores was assessed. Results: The correlation analyses revealed positive correlations between the amount of moderate-intensity and very active physical activity (minutes/day) and SF-36 scores (p < 0.05). Conclusion: Physical activity of at least moderate intensity is associated with better QOL in older adults. Further studies are required to verify the effects of increased physical activity on QOL in older adults.

A Study on Performance Evaluation for Electrocardiography Signal Measurement Electrode based on Conductive Fabric (전도성 섬유 기반 심전도 전극의 성능 평가에 관한 연구)

  • Kang, Bo Kyu;Yoo, Sun Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.210-220
    • /
    • 2013
  • Recently, as we move toward a society with an increasingly aged population, wearable U-health devices in various shapes with smart wear have been developed in order to conveniently measure health variables without using hands in daily life or at home. However, the problem is that only supply of the wearable U-health devices is focused and its applicable devices are studied and developed, which has resulted in lack of awareness of importance of performance evaluation. In this study, two electrodes were fabricated using conductive fabric which can be used as electrode if attached to wearable U-health devices or smart wear in order to measure ECG signal. Two electrodes those were fabricated using conductive fabric were compared the correlation, impedance and CMRR with patch typed Ag-AgCl electrode-normally used for measurement of ECG signal, so that the study would find out if the fabricated electrode can be used with the wearable U-health devices by testing and evaluating performances.

Development of a Backpack-Based Wearable Proximity Detection System

  • Shin, Hyungsub;Chang, Seokhee;Yu, Namgyenong;Jeong, Chaeeun;Xi, Wen;Bae, Jihyun
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.647-654
    • /
    • 2022
  • Wearable devices come in a variety of shapes and sizes in numerous fields in numerous fields and are available in various forms. They can be integrated into clothing, gloves, hats, glasses, and bags and used in healthcare, the medical field, and machine interfaces. These devices keep track individuals' biological and behavioral data to help with health communication and are often used for injury prevention. Those with hearing loss or impaired vision find it more difficult to recognize an approaching person or object; these sensing devices are particularly useful for such individuals, as they assist them with injury prevention by alerting them to the presence of people or objects in their immediate vicinity. Despite these obvious preventive benefits to developing Internet of Things based devices for the disabled, the development of these devices has been sluggish thus far. In particular, when compared with people without disabilities, people with hearing impairment have a much higher probability of averting danger when they are able to notice it in advance. However, research and development remain severely underfunded. In this study, we incorporated a wearable detection system, which uses an infrared proximity sensor, into a backpack. This system helps its users recognize when someone is approaching from behind through visual and tactile notification, even if they have difficulty hearing or seeing the objects in their surroundings. Furthermore, this backpack could help prevent accidents for all users, particularly those with visual or hearing impairments.