• 제목/요약/키워드: Wearable Sensing

검색결과 99건 처리시간 0.025초

웨어러블 기능성 스마트 패션제품 개발 연구 - 특정사용자를 위한 특수한 기능성 구현을 중심으로 - (A Study on the Development of Wearable Smart Fashion Product - Focused on the Construction of Optimized Functionalities for Particular Needs -)

  • 이현승;이재정
    • 한국의류산업학회지
    • /
    • 제21권2호
    • /
    • pp.133-140
    • /
    • 2019
  • This study developed smart fashion prototypes that provide utilitarian functionality by combining Fashion and Electronics regarding the IT focused convergence tendency in modern industries. A convergence R&D workshop was performed by Fashion design majors and Engineering majors for the study. As a result, 5 functional smart fashion prototypes were developed and the outline of each prototype are as follows. The $1^{st}$ prototype, 'Hidden Camera Detecting Coat' focused on gender-related crimes. The coat uses infrared lighting and LED technologies to provide a function to detect hidden cameras in suspicious public spaces such as toilets. The $2^{nd}$ prototype, 'Heating-massage Suit' targeted patients with musculoskeletal system difficulties. The suit uses heating and vibration technologies to provide a heating massage treatment for patients with ongoing difficulties in their daily lives. The $3^{rd}$ prototype is an air-bag jacket to prevent sexual molestation on public transportation. The jacket extends its volume through pressure sensing, air compressing, motors and 3D-printing technology to secure the wearer's personal preventive space between the user's body and others. The $4^{th}$ prototype is a town wear for people suffering from synesthesia. People with synesthesia inadvertently see colors when exposed to certain sounds. This town wear uses sound sensing, air compressing, motors and 3D-printing technology to provide sound prevention and a comfortable sound playing function. The $5^{th}$ prototype is a set of a vest and a gloves for visually impaired people. The vest and gloves uses DMS, voice playing, vibration technology to provide distance measuring and warning functions.

BioPebble: 개인화된 해석을 지원하는 돌 타입 휴대용 생체신호 측정센서 (BioPebble: Stone-type physiological sensing device Supporting personalized physiological signal analysis)

  • 최아영;박고은;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.13-18
    • /
    • 2008
  • 최근 건강 관리에 대한 관심이 증가하면서 착용형 생체 신호 센서, 재택형 무구속계측 센서에 관한 연구가 활발하게 진행되고 있다. 그러나, 측정 기술의 발전과 달리 측정결과를 제공하는 단계에서는 심장 박동수, 체온 등의 값을 단일된 임계치 기반으로 판단하며, 분석된 결과가 사용자에게 어떤 의미를 주는지에 대한 해석은 제공하지 않고 있다. 따라서 본 논문에서는 사용하기 편한 돌 형태의 휴대형 생체신호 측정센서를 기반으로 사용자 별로 적합한 생체신호 해석 방법을 제안한다. 개인화된 생체 신호 해석을 위해 1 주일간 사용자의 시간대별 데이터를 획득하고 사용자 별 특성에 따라 모델링을 한 후, 모델에 기반하여 사용자에게 맞는 생체 신호 범위를 정하고 이를 판단하는 근거로 활용한다, 센서는 기존의 착용형 생체 신호 센서 및 이를 이용한 응용에 폭넓게 사용될 수 있다.

  • PDF

Development and Usability Test of Baby Vest Prototypes with a Body Temperature Sensing Function

  • Yi, Kyong-Hwa;Song, Hayoung
    • 한국의류학회지
    • /
    • 제44권3호
    • /
    • pp.427-440
    • /
    • 2020
  • This study developed a vest prototype capable of monitoring body temperature using textile electrodes to prevent the sudden death of babies as well as to determine the quality of developed products by evaluating usability with commercial products. Based on the results of the 7th Size Korea Project, a basic pattern for a vest prototype was drafted by applying the average size of two-year-old Korean babies. Two prototypes were the detachable (VEST I) and integrated textile electrodes vest type (VEST II), which followed the same design. The materials were 100% cotton single jersey (SJ) and double jersey (DJ). Six experts evaluated the usability of the developed vests (VEST I & VEST II) and commercial product (VEST M). The single-layer woven textile electrode appeared to have a slightly higher conductivity than the double-layer one. There was no statistical difference in the body temperature sensing function between VEST I and VEST II. Finally, the superiority of the VEST I was verified through a comparison with commercial products (VEST M). The usability test suggested that a wearable smart clothing system of the integrated conductive textile could be further commercialized for bio-monitor applications in Ubiquitous-health care.

팔라듐/탄소나노튜브 버키페이퍼를 이용한 상온감지 수소가스 센서 (Room Temperature Hydrogen Gas Sensor using Pd/Carbon Nanotubes Buckypaper)

  • 한마음;김재건;김영삼;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.394-398
    • /
    • 2020
  • In this paper, we report the sensing performance of H2 gas sensors composed of Pd/carbon nanotube (CNT) buckypaper at room temperature. The CNT buckypaper was made using a simple filtration process and subsequently deposited with Pd as the sensing material. The sensitivity of the sensor increased with respect to the gas concentration. To investigate the effect of Pd thickness, Pd layers of different thickness were deposited on the buckypaper, and the response of the sensor was evaluated. The proposed sensor exhibits excellent sensing properties with optimized Pd thickness at room temperature (25℃). Pd nanoparticles significantly impact the sensitivity and selectivity of the sensor because of the spillover effect. In addition, the sensor is highly suitable for bendable and wearable devices owing to its structural flexibility.

정전 발전 기반 소프트 로봇 응용 최신 기술 (Recent Advances on TENG-based Soft Robot Applications)

  • 성정빈;최덕현
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.378-393
    • /
    • 2022
  • 마찰전기 나노발전기(이하 TENG)의 새로운 발전 기술은 에너지 수집 및 자가 전력 공급 감지 응용 분야의 긍정적 전망으로 인해 점점 더 많은 관심을 받고 있다. 또한 최근 소프트로봇의 부상은 플렉시블과 소프트센서, 액추에이터 개발에 대한 폭넓은 관심을 불러 일으키고 있다. TENG는 액추에이터와 자가 전력 공급 센서를 구동하는 유망한 전원으로 간주되어 소프트웨어 로봇, 소프트 센서 및 액추에이터 개발을 위한 독창적인 방법을 제공한다. 이 리뷰에서는 TENG를 기반으로 다양한 형태와 기능을 가진 소프트웨어 로봇을 소개하려 한다. 그 중 자연계의 구조, 표면 형태, 재료 특성과 센싱/발전 메커니즘을 모방한 바이오닉 소프트 로봇의 설계는 TENG 성능 향상에 큰 도움이 되었다. 또한 다양한 바이오닉 소프트 로봇은 TENG의 간단한 구조, 자체 전력 공급 특성 및 조정 가능한 출력으로 인해 이전 구동 방식보다 향상되었다. 그리하여 이 리뷰에서는 TENG가 활성화한 소프트 로봇 응용의 특정 핵심 영역에서 다양한 연구를 종합적으로 검토하려 한다. 리뷰를 요약하자면 먼저 최근 개발된 다양한 TENG 기반 소프트웨어 로봇을 정리하고 다양한 장비 구조, 표면 형태 및 자연적으로 영감을 받은 재료를 비교 분석하여 그에 따른 TENG 성능 개선을 수행한다. 자연계에 사용되는 다양한 유비쿼터스 감지 원리와 발전 메커니즘 및 유사한 인공 TENG 설계가 확인되었고 촉각 디스플레이 및 웨어러블 기기, 인공 전자 피부 등의 기기에 TENG를 활성화하는 바이오닉 응용에 대해 논의한다. 마지막으로 TENG 기반 센서 및 구동 장비의 로봇 실제 적용에 대한 발전 기회, 도전 및 미래 전망을 분석한다.

실내 대기질 진단을 위한 금속산화물 기반 폼알데하이드 가스센서 연구 동향 (Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality)

  • 김윤화;구원태;장지수;김일두
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.377-384
    • /
    • 2019
  • People currently spend more than 80% of their time indoors; therefore, the management of indoor air quality has become an important issue. The contamination of indoor air can cause sick house syndrome and various environmental diseases such as atopy and nephropathy. Formaldehyde gas, which is the main contaminant of indoor air, is lethal even with microscopic exposure; however, it is commonly used as an adhesive and waterproofing agent for indoor building materials. Therefore, there is a need for a gas sensor capable of detecting trace amounts of formaldehyde gas. In this review, we summarize recent studies on metal oxide-based semiconductor gas sensors for formaldehyde gas detection, methods to improve the gas-sensing properties of metal oxides of various dimensions, and the effects of catalysts for the detection of parts-per-billion level gases. Through this, we discuss the necessary characteristics of the metal oxidebased semiconductors for gas sensors for the development of next-generation sensors.

Silver nanowire-containing wearable thermogenic smart textiles with washing stability

  • Dhanawansha, Kosala B.;Senadeera, Rohan;Gunathilake, Samodha S.;Dassanayake, Buddhika S.
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.123-131
    • /
    • 2020
  • Conventional fabrics that have modified in to conductive fabrics using conductive nanomaterials have novel applications in different fields. These of fabrics can be used as heat generators with the help of the Joule heating mechanism, which is applicable in thermal therapy and to maintain the warmth in cold weather conditions in a wearable manner. A modified fabric can also be used as a sensor for body temperature measurements using the variation of resistance with respect to the body temperature deviations. In this study, polyol synthesized silver nanowires (Ag NWs) are incorporated to commercially available cotton fabrics by using drop casting method to modify the fabric as a thermogenic temperature sensor. The variation of sheet resistance of the fabrics with respect to the incorporated mass of Ag NWs was measured by four probe technique while the bulk resistance variation with respect to the temperature was measured using a standard ohm meter. Heat generation profiles of the fabrics were investigated using thermo graphic camera. Electrically conductive fabrics, fabricated by incorporating 30 mg of Ag NWs in 25 ㎠ area of cotton fabric can be heated up to a maximum steady state temperature of 45℃, using a commercially available 9 V battery.

동작인식 스마트 의류제품의 특징적 유형 분석 (The analysis of the characteristic types of motion recognition smart clothing products)

  • 임효빈;고현진
    • 복식문화연구
    • /
    • 제25권4호
    • /
    • pp.529-542
    • /
    • 2017
  • The purpose of this study is to utilize technology as basic data for smart clothing product research and development. This technology can recognize user's motion according to characteristics types and functions of wearable smart clothing products. In order to analyze the case of motion recognition products, we searched for previous research data and cases referred to as major keywords in leading search engines, Google and Naver. Among the searched cases, information on the characteristics and major functions of the 42 final products selected on the market are examined in detail. Motion recognition for smart clothing products is classified into four body types: head & face, body, arms & hands, and legs & feet. Smart clothing products was developed with various items, such as hats, glasses, bras, shirts, pants, bracelets, rings, socks, shoes, etc., It was divided into four functions health care type for prevention of injuries, health monitor, posture correction, sports type for heartbeat and exercise monitor, exercise coaching, posture correction, convenience for smart controller and security and entertainment type for pleasure. The function of the motion recognition smart clothing product discussed in this study will be a useful reference when designing a motion recognition smart clothing product that is blended with IT technology.

레이저 유도 그래핀 기반의 고성능 웨어러블 포도당 패치센서 (Laser-induced Graphene Based Wearable Glucose Patch Sensor with Ultra-low Detection Limit)

  • 나중산;윤효상;선성;김지영;박재영
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.47-51
    • /
    • 2019
  • Sweat-based glucose sensors are being widely investigated and researched as they facilitate painless and continuous measurement. However, because the concentration of sweat glucose is almost a hundred times lower than that of blood glucose, it is important to develop electrochemical sensing electrode materials that are highly sensitive to glucose molecules for the detection of low concentrations of glucose. The preparation of a flexible and ultra-sensitive sensor for detection of sweat glucose is presented in this study. Oxygen and nitrogen are removed from the surface of a polyimide film by exposure to a CO2 laser; hence, laser-induced graphene (LIG) is formed. The fabricated LIG electrode showed favorable properties of high roughness and good stability, flexibility, and conductivity. After the laser scanning, Pt nanoparticles (PtNP) with good catalytic behavior were electrodeposited and the glucose sensor thus developed, with a LIG/PtNP hybrid electrode, exhibited a high order of sensitivity and detection limit for sweat glucose.

MXene 기반의 웨어러블 센서 제작 및 평가 (Fabrication and Evaluation of the MXene-Based Wearable Sensor)

  • 윤영삼;이호진;차고은;김태욱;박종성
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.295-299
    • /
    • 2023
  • Herein, we propose a simple fabrication method for MXene-coated V-groove sensors for applications. To enhance the sensitivity of this sensor, we applied MXene particles, instead of conventional metal layers, as a sensing material on the sensor's surface. This allows for an easier fabrication, as well as higher sensitivity of the sensor compared to those of our previously demonstrated metal-based V-groove sensor. Additionally, polyurethane-acrylate, a UV-curable liquid polymer, can be easily applied using micro-electromechanical systems-based surface-texture micromachining. The sensor sensitivity is approximately 0.08 /mm, and it can be improved by increasing the number of V-grooves. We believe that the proposed MXene-based wearable sensor offers a great potential in detecting various types of motions characteristic of human activities.