• Title/Summary/Keyword: Wearable Sensing

Search Result 100, Processing Time 0.037 seconds

3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites (PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서)

  • Kim, Jeong Hyeon;Kim, Hyunseung;Jeong, Chang Kyu;Lee, Han Eol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

Optimization of SWCNT-Coated Fabric Sensors for Human Joint Motion Sensing

  • Cho, Hyun-Seung;Park, Seon-Hyung;Yang, Jin-Hee;Park, Su-Youn;Han, Bo-Ram;Kim, Jin-Sun;Lee, Hae-Dong;Lee, Kang-Hwi;Lee, Jeong-Whan;Kang, Bok-Ku;Chon, Chang-Soo;Kim, Han-Sung;Lee, Joo-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2059-2066
    • /
    • 2018
  • This study explored the feasibility of utilizing an SWCNT-coated fabric sensor for the development of a wearable motion sensing device. The extent of variation in electric resistance of the sensor material was evaluated by varying the fiber composition of the SWCNT-coated base fabrics, attachment methods, number of layers, and sensor width and length. 32 sensors were fabricated by employing different combinations of these variables. Using a custom-built experimental jig, the amount of voltage change in a fabric sensor as a function of the length was measured as the fabric sensors underwent loading-unloading test with induced strains of 30 %, 40 %, and 50 % at a frequency of 0.5 Hz. First-step analysis revealed the following: characteristics of the strain-voltage curves of the fabric sensors confirmed that 14 out of 32 sensors were evaluated as more suitable for measuring human joint movement, as they yield stable resistance values under tension-release conditions; furthermore, significantly stable resistance values were observed at each level of strain. Secondly, we analyzed the averaged maximum, minimum, and standard deviations at various strain levels. From this analysis, it was determined that the two-layer sensor structure and welding attachment method contributed to the improvement of sensing accuracy.

Energy Use Coordinator for Multiple Personal Sensor Devices

  • Rhee, Yunseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2017
  • Useful continuous sensing applications are increasingly emerging as a new class of mobile applications. Meanwhile, open, multi-use sensor devices are newly adopted beyond smartphones, and provide huge opportunities to expand potential application categories. In this upcoming environment, uncoordinated use of sensor devices would cause severe imbalance in power consumption of devices, and thus result in early shutdown of some sensing applications depending on power-hungry devices. In this paper, we propose EnergyCordy, a novel inter-device energy use coordination system; with a system-wide holistic view, it coordinates the energy use of concurrent sensing applications over multiple sensor devices. As its key approach, we propose a relaxed sensor association; it decouples the energy use of an application from specific sensor devices leveraging multiple context inference alternatives, allowing flexible energy coordination at runtime. We demonstrated the effectiveness of EnergyCordy by developing multiple example applications over custom-designed wearable senor devices. We show that EnergyCordy effectively coordinates the power usage of concurrent sensing applications over multiple devices and prevent undesired early shutdown of applications.

Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG) (수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Yang, Heui-Koung;Shin, Kun-Su;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

Wearable and Motorized Crutch Control System (착용형 전동 목발 제어시스템)

  • Yoon, Dukchan;Jang, Giho;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.133-139
    • /
    • 2014
  • This paper proposes a wearable and motorized crutch control system for the patients using the conventional crutches. The conventional crutches have a few disadvantages such as the inconvenience caused by the direct contact between the ground and the armpit of the patients, and unstable gait patterns. In order to resolve these problems, the motorized crutch is designed as a wearable type on an injured lower limb. In other words, the crutch makes the lower limb to be moved forward while supporting the body weight, protecting the lower limb with frames, and rotating a roller equipped on the bottom of the frames. Also the crutch is controlled using the electromyography and two force sensing resistor (FSR) sensors. The electromyography is used to extract the walking intention from the patient and the FSR sensors to classify the stance and swing phases while walking. As a result, the developed crutch makes the patients walk enabling both hands to be free, as if normal people do.

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

Measurement of Human Behavior and Identification of Activity Modes by Wearable Sensors

  • Kanasugi, Hiroshi;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1046-1048
    • /
    • 2003
  • Recently, various researches in respect of the positioning technologies using satellites and the other sensors have made location-based services (LBS) more common and accurate. Consequently, concern about position information has been increasing. However, since these positioning systems only focus on user's position, it is difficult to know the user's attitude or detailed behaviors at the specific position. It is worthy to study on how to acquire such human attitude or behavior, because those information is useful to know the context of the user. In this paper, the sensor unit consisting of three dimensional accelerometer was attached to human body, and autonomously measured the perpendicular acceleration of ordinary human behaviors including activity modes such as walking, running, and transportation mode using transportation such as a train, a bus, and an elevator. Subsequently, using the classified measurement results, the method to identify the human activity modes was proposed.

  • PDF

Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials (저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술)

  • Min, B.K.;Yi, Y.;Nguyen, V.T.;Mondal, S.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

Effect of preparation of organic ferroelectric P(VDF-TrFE) nanostructure on the improvement of tennis performance

  • Qingyu Wang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.329-334
    • /
    • 2023
  • Organic ferroelectric material found vast application in a verity of engineering and health technology fields. In the present study, we investigated the application of the deformable organic ferroelectric in motion measurement and improving performance in tennis players. Flexible ferroelectric material P(VDF-TrFE) could be used in wearable motion sensors in tennis player transferring velocity and acceleration data to collecting devises for analyzing the best pose and movements in tennis players to achieve best performances in terms of hitting ball and movement across the tennis court. In doing so, ferroelectric-based wearable sensors are used in four different locations on the player body to analyze the movement and also a sensor on the tennis ball to record the velocity and acceleration. In addition, poses of tennis players were analyzed to find out the best pose to achieve best acceleration and movement. The results indicated that organic ferroelectric-based sensors could be used effectively in sensing motion of tennis player which could be utilized in the optimization of posing and ball hitting in the real games.