DOI QR코드

DOI QR Code

Effect of preparation of organic ferroelectric P(VDF-TrFE) nanostructure on the improvement of tennis performance

  • Qingyu Wang (College of Physical Education, Xuchang University)
  • Received : 2021.11.02
  • Accepted : 2022.11.17
  • Published : 2023.04.25

Abstract

Organic ferroelectric material found vast application in a verity of engineering and health technology fields. In the present study, we investigated the application of the deformable organic ferroelectric in motion measurement and improving performance in tennis players. Flexible ferroelectric material P(VDF-TrFE) could be used in wearable motion sensors in tennis player transferring velocity and acceleration data to collecting devises for analyzing the best pose and movements in tennis players to achieve best performances in terms of hitting ball and movement across the tennis court. In doing so, ferroelectric-based wearable sensors are used in four different locations on the player body to analyze the movement and also a sensor on the tennis ball to record the velocity and acceleration. In addition, poses of tennis players were analyzed to find out the best pose to achieve best acceleration and movement. The results indicated that organic ferroelectric-based sensors could be used effectively in sensing motion of tennis player which could be utilized in the optimization of posing and ball hitting in the real games.

Keywords

References

  1. Abrams, G.D., Sheets, A.L., Andriacchi, T.P. and Safran, M.R. (2011), "Review of tennis serve motion analysis and the biomechanics of three serve types with implications for injury", Sports Biomech., 10(4), 378-390. https://doi.org/10.1080/14763141.2011.629302.
  2. Al-Furjan, M.S.H., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2021), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 159, 107242. https://doi.org/10.1016/j.tws.2020.107242.
  3. Archana, M. and Geetha, M.K. (2015), "Object detection and tracking based on trajectory in broadcast tennis video", Procedia Comput. Sci., 58, 225-232. https://doi.org/10.1016/j.procs.2015.08.060.
  4. Colomar, J., Corbi, F., Brich, Q. and Baiget, E. (2022), "Determinant physical factors of tennis serve velocity: A brief review", Int. J. Sports Physiol. Perform., 17(8), 1159-1169. https://doi.org/10.1123/ijspp.2022-0091
  5. Conaire, C.O., Kelly, P., Connaghan, D. and O'Connor, N.E. (2009), "Tennissense: A platform for extracting semantic information from multi-camera tennis data", Proceedings of the 2009 16th International Conference on Digital Signal Processing, 1-6.
  6. Fett, J., Ulbricht, A. and Ferrauti, A. (2020), "Impact of physical performance and anthropometric characteristics on serve velocity in elite junior tennis players", J. Strength Condition. Res., 34(1), 192-202. https://doi.org/10.1519/JSC.0000000000002641.
  7. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134, 1-23. https://doi.org/10.1140/epjp/i2019-12742-7.
  8. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2021), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct. Mach., 49(6), 811-840. https://doi.org/10.1080/15397734.2019.1701490.
  9. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2021), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct., 49(5), 640-658. https://doi.org/10.1080/15397734.2019.1697932.
  10. Hayes, M.J., Spits, D.R., Watts, D.G. and Kelly, V.G. (2021), "Relationship between tennis serve velocity and select performance measures", J. Strength Condition. Res., 35(1), 190-197. https://doi.org/10.1519/JSC.0000000000002440.
  11. Hernandez-Davo, J.L., Moreno, F.J., Sanz-Rivas, D., Hernandez-Davo, H., Coves, A . and Caballero, C. (2019), "Variations in kinematic variables and performance in the tennis serve according to age and skill level", Int. J. Perform. Anal. Sport, 19(5), 749-762. https://doi.org/10.1080/24748668.2019.1653036.
  12. Horiuchi, S. and Tokura, Y. (2008), "Organic ferroelectrics", Nature Mater., 7(5), 357-366. https://doi.org/10.1038/nmat2137
  13. Hornestam, J.F., Souza, T.R., Magalhaes, F.A., Begon, M., Santos, T.R.T. and Fonseca, S.T. (2021), "The effects of knee flexion on tennis serve performance of intermediate level tennis players", Sensors, 21(16), 5254. https://doi.org/10.3390/s21165254.
  14. Koya, N., Kitamura, T. and Takahashi, H. (2022), "Prediction of service performance based on physical strength in elite junior tennis players", Front. Psychol., 13. https://doi.org/10.3389/fpsyg.2022.898224.
  15. Lee, Y., Park, J., Cho, S., Shin, Y. E., Lee, H., Kim, J., ... and Ko, H. (2018), "Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range", ACS Nano, 12(4), 4045-4054. https://doi.org/10.1021/acsnano.8b01805.
  16. Li, J., Tang, F. and Habibi, M. (2022), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22.
  17. Mehri, M., Asadi, H. and Wang, Q. (2016), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009.
  18. Melo, A.G., Pinto, M.F., Marcato, A.L., Biundini, I.Z. and Rocha, N.M. (2021), "Low-cost trajectory-based ball detection for impact indication and recording", J. Control Automat. Electr. Syst., 32, 367-377. https://doi.org/10.1007/s40313-020-00677-7.
  19. Muralt, P. (2000), "Ferroelectric thin films for micro-sensors and actuators: A review", J. Micromech. Microeng., 10(2), 136. https://doi.org/10.1088/0960-1317/10/2/307.
  20. Naderi, A., Behdad, S., Fakher, M. and Hosseini-Hashemi, S. (2020), "Vibration analysis of mass nanosensors with considering the axial-flexural coupling based on the two-phase local/nonlocal elasticity", Mech. Syst. Signal Pr., 145, 106931. https://doi.org/10.1016/j.ymssp.2020.106931.
  21. Petritz, A., Karner-Petritz, E., Uemura, T., Schaffner, P., Araki, T., Stadlober, B. and Sekitani, T. (2021), "Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes", Nature Commun., 12(1), 2399.
  22. Reid, M., Elliott, B. and Alderson, J. (2007), "Shoulder joint loading in the high performance flat and kick tennis serves", British J. Sports Med., 41(12), 884-889. http://doi.org/10.1136/bjsm.2007.036657.
  23. Sanchez-Pay, A., Ramon-Llin, J., Martinez-Gallego, R., Sanz-Rivas, D., Sanchez-Alcaraz, B.J. and Frutos, S. (2021), "Fitness testing in tennis: Influence of anthropometric characteristics, physical performance, and functional test on serve velocity in professional players", PloS one, 16(11), e0259497. https://doi.org/10.1371/journal.pone.0259497.
  24. Seleznev, V.A., Prinz, V.Y., Aniskin, V.M. and Maslov, A.A. (2009), "Generation and registration of disturbances in a gas flow. 1. Formation of arrays of tubular microheaters and microsensors", J. Appl. Mech. Tech. Phy., 50(2).
  25. Singh, K.R., Nayak, V., Singh, J. and Singh, R.P. (2021), "Nano-enabled wearable sensors for the Internet of Things (IoT)", Mater. Lett., 304, 130614. https://doi.org/10.1016/j.matlet.2021.130614.
  26. Tsikriteas, Z.M., Roscow, J.I., Bowen, C.R. and Khanbareh, H. (2021), "Flexible ferroelectric wearable devices for medical applications", Iscience, 24(1), 101987. https://doi.org/10.1016/j.isci.2020.101987.
  27. Valasek, J. (1921), "Piezo-electric and allied phenomena in Rochelle salt", Phys. Rev., 17(4), 475. https://doi.org/10.1103/PhysRev.17.475.
  28. Whatmore, R.W., Patel, A., Shorrocks, N.M. and Ainger, F.W. (1990), "Ferroelectric materials for thermal IR sensors state-of-the-art and perspectives", Ferroelectrics, 104(1), 269-283. https://doi.org/10.1080/00150199008223829.
  29. Yan, F., Kittler, J., Windridge, D., Christmas, W., Mikolajczyk, K., Cox, S. and Huang, Q. (2014), "Automatic annotation of tennis games: An integration of audio, vision, and learning", Image Vision Comput., 32(11), 896-903. https://doi.org/10.1016/j.imavis.2014.08.004.
  30. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480.
  31. Zhao, H., Wang, S., Zhou, G. and Jung, W. (2019l), "TennisEye: Tennis ball speed estimation using a racket-mounted motion sensor", Proceedings of the 18th International Conference on Information Processing in Sensor Networks, 241-252.