• Title/Summary/Keyword: Weapon-Target Allocation

Search Result 14, Processing Time 0.018 seconds

A Study on the Reliability Allocation for an Underwater Guided Weapon System: Case Study (수중유도무기체계의 신뢰도 할당: 사례연구)

  • Kim, HeeWook;Lee, HakPyo;Heo, GilHwan;Oh, GeunTae;Kim, MyungSoo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • To improve the reliability of a weapon system, we perform the activities: setting the target reliability, reliability allocation, and reliability management, etc. Before starting weapon system development, the target reliability of system is set through advanced research and is allocated to its subsystems at the beginning of development. Then we manage the reliability of system and subsystems to meet the target reliability until completion of system development. In this paper, we research representative reliability allocation methods and introduce the suitable reliability allocation method followed by its application to the underwater guided weapon system. The purpose of this research is to review the proposed reliability allocation techniques and find an appropriate method for underwater weapon systems followed by the validation of its application.

A Genetic Algorithm Approach to the Fire Sequencing Problem

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.61-80
    • /
    • 2003
  • A fire sequencing problem is considered. Fire sequencing problem is a kind of scheduling problem that seeks to minimize the overall time span under a result of weapon­target allocation problem. The assigned weapons should impact a target simultaneously and a weapon cannot transfer the firing against another target before all planned rounds are consumed. The computational complexity of the fire sequencing problem is strongly NP­complete even if the number of weapons is two, so it is difficult to get the optimal solution in a reasonable time by the mathematical programming approach. Therefore, a genetic algorithm is adopted as a solution method, in which the representation of the solution, crossover and mutation strategies are applied on a specific condition. Computational results using randomly generated data are presented. We compared the solutions given by CPLEX and the genetic algorithm. Above $7(weapon){\times}15(target)$ size problems, CPLEX could not solve the problem even if we take enough time to solve the problem since the required memory size increases dramatically as the number of nodes expands. On the other hand, genetic algorithm approach solves all experimental problems very quickly and gives good solution quality.

A Study on Model for Target Assignment and Gun Ammunition Required for Naval Surface Warfar (수상전에서의 표적할당 및 포탄소요양 결정모형)

  • Min Gye-Ryo;Kim Heung-Man
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.28-44
    • /
    • 1987
  • This thesis presents a model to assign targets and to determine gun ammunitions required for naval surface warfare. Delivery errors of weapon systems and vulnerability of moving targets are analyzed, then probability to kill moving battle sihps is computed. A weapon-target allocation model is proposed by using the Out of Kilter technique. A model to determine ammunitions required for killing moving targets is also designed. The models are evaluated by simulation and sensitivity analysis.

  • PDF

A Study of population Initialization Method to improve a Genetic Algorithm on the Weapon Target Allocation problem (무기할당문제에서 유전자 알고리즘의 성능을 개선하기 위한 population 초기화 방법에 관한 연구)

  • Hong, Sung-Sam;Han, Myung-Mook;Choi, Hyuk-Jin;Mun, Chang-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.540-548
    • /
    • 2012
  • The Weapon Target Allocation(WTA) problem is the NP-Complete problem. The WTA problem is that the threatful air targets are assigned by weapon of allies for killing the targets. A good solution of NP-complete problem is heuristic algorithms. Genetic algorithms are commonly used heuristic for global optimization, and it is good solution on the diverse problem domain. But there has been very little research done on the generation of their initial population. The initialization of population is one of the GA step, and it decide to initial value of individuals. In this paper, we propose to the population initialization method to improve a Genetic Algorithm. When it initializes population, the proposed algorithm reflects the characteristics of the WTA problem domain, and inherits the dominant gene. In addition, the search space widely spread in the problem space to find efficiently the good quality solution. In this paper, the proposed algorithm to verify performance examine that an analysis of various properties and the experimental results by analyzing the performance compare to other algorithms. The proposed algorithm compared to the other initialization methods and a general genetic algorithm. As a result, the proposed algorithm showed better performance in WTA problem than the other algorithms. In particular, the proposed algorithm is a good way to apply to the variety of situation WTA problem domain, because the proposed algorithm can be applied flexibly to WTA problem by the adjustment of RMI.

Optimal Allocation Model of Anti-Artillery Radar by Using ArcGIS and its Specifications (지형공간정보와 제원 특성을 적용한 대포병레이더 최적배치모형)

  • Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.74-83
    • /
    • 2018
  • It is very crucial activities that Korean army have to detect and recognize enemy's locations and types of weapon of their artillery firstly for effective operation of friendly force's artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar's roles are very important for minimizing friendly force's damage because arbiters have to recognize a several enemy's artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander's intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar's performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation's solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar's operations and assisting a quick decision for commander finally.

The Optimal Allocation of Aircrafts to Targets by Using Mixed Integer Programming (혼합정수계획법을 이용한 항공기-목표물 최적할당에 관한 연구)

  • Lee, Dae-Ryeock;Yang, Jae-Hwan
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.55-74
    • /
    • 2008
  • In recent warfare, the performance improvement of air weapon systems enables an aircraft to strike multiple targets on a single sortie. Further, aircrafts attacking targets may carry out an operation as a strike package that is composed of bombers, escort aircrafts, SEAD (Suppression of Enemy Air Defenses) aircrafts and etc. In this paper, we present an aircraft allocation model that allocates multiple targets to a single sortie in the form of a strike package. A mixed integer programming is developed and solved by using a commercially available software. The new model is better than existing ones because not only it allocates aircrafts to multiple targets but also it models the concept of the strike package. We perform a computational experiment to compare the result of the new model with that of existing ones, and perform sensitivity analysis by varying a couple of important parameters.

A Weapon Assignment Algorithm for Rapid Reaction in Multi-Target and Multi-Weapon Environments (다표적-다무장 환경에서 신속 대응을 위한 무장 할당 알고리즘)

  • Yoon, Moonhyung
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.118-126
    • /
    • 2018
  • In order to dominate the multiple-targets of high threat in the initial stage of combat, it is necessary to maximize the combat effect by rapidly firing as many weapons as possible within a short time. Therefore, it is mandatory to establish the effective weapon allocation and utilize them for the combat. In this paper, we propose a weapon assignment algorithm for rapid reaction in multi-target and multi-weapon environments. The proposed algorithm maximizes the combat effect by establishing the fire plan that enables the rapid action with the operation of low complexity. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm perform the effective weapon assignment, which shows the high target assignment rate within the fast hour even under the large-scale battle environments. Therefore, our proposed scheme are expected to be highly useful when it is applied to real weapon systems.

An Algorithm for Weapon Allocation for Quick Reaction toward Hyper-velocity Targets (초고속 표적에 대한 신속대응을 위한 무기할당 알고리즘)

  • Kim, Jieun;Park, Junho;Cho, Kilseok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.471-472
    • /
    • 2014
  • 무기-표적할당(Weapon-Target Allocation: WTA)은 방어 무기체계의 신속하고 정확한 교전결심을 지원하기 위한 핵심적인 기술로서, 다수의 표적이 아군을 위협하는 상황에서 다수의 표적을 효과적으로 요격할 수 있도록 제한적인 무기자산을 효율적으로 할당하는 최적의 해를 찾는 문제이다. 최적의 해에 대한 평가 기준은 무기-표적 쌍들에 대한 요격확률의 합으로 계산된다. 요격확률은 무기가 표적을 요격하는 시점에 따라서 달라지므로, 정밀한 교전결심을 위해서는 요격 시점을 고려하여 무기를 할당하는 것이 중요하다. 특히나 초고속표적을 대응할 때는 표적의 속도가 매우 빨라 요격할 수 있는 시간이 매우 짧기 때문에 더욱 중요하다. 이러한 요구사항에도 불구하고 기존 연구에서는 요격 시점을 고려한 무기할당에 대한 연구가 미진하였다. 본 논문에서는 요격 시점을 고려한 무기할당 알고리즘을 제안하고자 하며 알고리즘에 대한 성능으로 표적에 대한 요격률뿐만 아니라, 표적 출현부터 요격까지의 소요시간인 교전반응시간을 분석하여 신속대응에 대한 성능도 함께 제시한다.

  • PDF

A Study on the Allocation and Engagement Scheduling of Air Defense Missiles by Using Mixed Integer Programming (혼합정수계획법을 이용한 요격미사일의 할당 및 교전 일정계획에 관한 연구)

  • Lee, Dae Ryeock;Yang, Jaehwan
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.109-133
    • /
    • 2015
  • This paper considers the allocation and engagement scheduling of air defense missiles by using MIP (mixed integer programming). Specifically, it focuses on developing a realistic MIP model for a real battle situation where multiple enemy missiles are headed toward valuable defended assets and there exist multiple air defense missiles to counteract the threats. In addition to the conventional objective such as the minimization of surviving target value, the maximization of total intercept altitude is introduced as a new objective. The intercept altitude of incoming missiles is important in order to minimize damages from debris of the intercepted missiles and moreover it can be critical if the enemy warhead contains an atomic or chemical bomb. The concept of so called the time window is used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. Lastly, the model is extended to simulate the situation where the guidance radar, which guides a defense missile to its target, has the maximum guidance capacity. The initial mathematical model developed contains several non-linear constraints and a non-linear objective function. Hence, the linearization of those terms is performed before it is solved by a commercially available software. Then to thoroughly examine the MIP model, the model is empirically evaluated with several test problems. Specifically, the models with different objective functions are compared and several battle scenarios are generated to evaluate performance of the models including the extended one. The results indicate that the new model consistently presents better and more realistic results than the compared models.

On Software Reliability Engineering Process for Weapon Systems (무기체계를 위한 소프트웨어의 신뢰성 공학 프로세스)

  • Kim, Ghi-Back;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.332-345
    • /
    • 2011
  • As weapon systems are evolving into more advanced and complex ones, the role of the software is becoming heavily significant in their developments. Particularly in the war field of today as represented by the network centric warfare(NCW), the reliability of weapon systems is definitely crucial. In this context, it is inevitable to develop software reliably enough to make the weapon systems operate robustly in the combat field. The reliability engineering activities performed to develop software in the domestic area seem to be limited to the software reliability estimations for some projects. To ensure that the target reliability of software be maintained through the system's development period, a more systematic approach to performing software reliability engineering activities are necessary from the beginning of the development period. In this paper, we consider the software reliability in terms of the development of a weapon system as a whole. Thus, from the systems engineering point of view, we analyze the models and methods that are related to software reliability and a variety of associated activities. As a result, a process is developed, which can be called the software reliability engineering process for weapon systems (SREP-WS), The developed SREP-WS can be used in the development of a weapon system to meet a target reliability throughout its life-cycle. Based on the SREP-WS, the software reliability could also be managed quantitatively.