• Title/Summary/Keyword: Wavenumber

Search Result 205, Processing Time 0.025 seconds

Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches (수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석)

  • Ryue, Jungsoo;Kim, Eunbi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

An Investigation of Power Flow Mechanism in Beam-plate Built-up Structures with an Energy-absorbing Plate (보-판 결합 구조물에서 에너지 흡수체로 작용하는 판의 특성에 따른 파워 전달 특성에 관한 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.55-64
    • /
    • 2007
  • In the built-up structure consisting of a stiff beam and a flexible plate, Grice showed that the plate behaves as an energy absorber in narrow frequency bands(called plate blocking effect). This paper deals with such beam-plate coupled structures, where the plate is an energy absorber and the excited beam is an energy path. It is found that such energy dissipation can occur in the relatively broad bands, if different stiffnesses are used in the rectangular plate. It was experimentally verified by Heckl that the energies in terms of one-third octave band averages transferred to the plate(or dissipated in the plate) increase for increased plate damping. This Paper, however, shows that the energy absorption suddenly reduces at the certain narrow frequency bands where the plate damping effect upon the coupled beam is maximum. Also, in order to minimize energy transfer through the beam in terms of one-third octave band averages, it is advantageous to increase the plate damping closer to the excitation point All these results are based on the wane method.

Numerical Quadrature Techniques for Inverse Fourier Transform in Two-Dimensional Resistivity Modeling (2차원 전기비저항 모델링에서 후리에역변환의 수치구적법)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.73-77
    • /
    • 1992
  • This paper compares numerical quadrature techniques for computing an inverse Fourier transform integral in two-dimensional resistivity modeling. The quadrature techniques using exponential and cubic spline interpolations are examined for the case of a homogeneous earth model. In both methods the integral over the interval from 0 to ${\lambda}_{min}$, where ${\lambda}_{min}$, is the minimum sampling spatial wavenumber, is calculated by approximating Fourier transformed potentials to a logarithmic function. This scheme greatly reduces the inverse Fourier transform error associated with the logarithmic discontinuity at ${\lambda}=0$. Numrical results show that, if the sampling intervals are adequate, the cubic spline interpolation method is more accurate than the exponential interpolation method.

  • PDF

Subseasonal-to-Seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric Sudden Warming (GloSea5 모형의 계절내-계절 예측성 검정: Part 2. 성층권 돌연승온)

  • Song, Kanghyun;Kim, Hera;Son, Seok-Woo;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.123-139
    • /
    • 2018
  • The prediction skills of stratospheric sudden warming (SSW) events and its impacts on the tropospheric prediction skills in global seasonal forecasting system version 5 (GloSea5), an operating subseasonal-to-seasonal (S2S) model in Korea Meteorological Administration, are examined. The model successfully predicted SSW events with the maximum lead time of 11.8 and 13.2 days in terms of anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), respectively. The prediction skills are mainly determined by phase error of zonal wave-number 1 with a minor contribution of zonal wavenumber 2 error. It is also found that an enhanced prediction of SSW events tends to increase the tropospheric prediction skills. This result suggests that well-resolved stratospheric processes in GloSea5 can improve S2S prediction in the troposphere.

Effects of Oxygen and Nitrogen Addition on the Optical Properties of Diamond-Like Carbon Films (산소와 질소의 첨가에 따른 DLC막의 광학적 특성의 변화)

  • Hwang, Min-Sun;Lee, Chong-Mu;Moon, Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1047-1051
    • /
    • 1997
  • CH$_{4}$와 H$_{2}$의 혼합가스에 미량의 질소와 산소를 첨가하여 rf-플라즈마 CVD법으로 DLC막을 합성하였다. 이 때 챔버내 압력은 430mtorr, 기판에 인가된 전력은 80W였으며, H$_{2}$와 CH$_{4}$의 비율은 1:1이었다. 이 시편들에 대해 가시광선 영역과 자외선 영역에서의 투과도를 비교하였으며, 결합구조의 변화를 알아보기 위하여 FTIR 분석을 실시하였다. 질소의 경우 첨가량이 6.3%에서 17.4%으로 증가됨에 따라 전체적인 투과도값이 증가하였으며, FRIR 분석결과 wavenumber 3500 $cm^{-1}$ /의 위치에 N-H stretching band가 나타나고 2300$cm^{-1}$ /에는 nitrile의 피크가 나타났다. 이 피크들의 존재는 질소의 첨가에 의하여 interlink를 감소시킴으로써 막의 잔류응력을 현저히 감소시킬 수 있음을 의미한다. 2% $O_{2}$를 첨가한 경우 막의 투과도는 질소를 첨가한 경우보다 월등히 더 향상되었다. 질소첨가량을 증가시킴에 따라 optical band gap또한 증가되는 경향을 보였으며, 2% $O_{2}$를 첨가하였을 때 막의 optical band gap은 0.5까지 감소하였다.

  • PDF

Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석)

  • 김병삼;이성철
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

Construction of Orthogonal Basis Functions with Non-Divergent Barotropic Rossby-Haurwitz Waves

  • Cheong, Hyeong-Bin;Jeong, Hanbyeol;Kim, Wonho
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.333-341
    • /
    • 2014
  • A new set of basis functions was constructed using the Rossby-Haurwitz waves, which are the eigenfunctions of nondivergent barotropic vorticity equations on the sphere. The basis functions were designed to be non-separable, that is, not factored into functions of either the longitude or the latitude. Due to this property, the nodal lines of the functions are aligned neither along with the meridian nor the parallel. The basis functions can be categorized into groups of which members have the same degree or the total wavenumber-like index on the sphere. The orthonormality of the basis functions were found to be close to the machine roundoffs, giving the error of $O(10^{-15})$ or $O(10^{-16})$ for double-precision computation (64 bit arithmetic). It was demonstrated through time-stepping procedure that the basis functions were also the eigenfunctions of the non-divergent barotropic vorticity equations. The projection of the basis functions was carried out onto the low-resolution geopotential field of Gaussian bell, and compared with the theory. The same projections were performed for the observed atmospheric-geopotential height field of 500 hPa surface to demonstrate decomposition into the fields that contain disturbance of certain range of horizontal scales. The usefulness of the new basis functions was thus addressed for application to the eigenmode analysis of the atmospheric motions on the global domain.

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.