Browse > Article
http://dx.doi.org/10.12989/sem.2017.61.1.065

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields  

Kiani, Keivan (Department of Civil Engineering, K.N. Toosi University of Technology)
Gharebaghi, Saeed Asil (Department of Civil Engineering, K.N. Toosi University of Technology)
Mehri, Bahman (Department of Mathematical Sciences, Sharif University of Technology)
Publication Information
Structural Engineering and Mechanics / v.61, no.1, 2017 , pp. 65-76 More about this Journal
Abstract
Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.
Keywords
conducting nanoplate; in-plane and out-of-plane waves; bidirectional magnetic field; Nonlocal Kirchhoff plate theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30, 1279-1299.   DOI
2 Abouzar, M.H., Poghossian, A., Pedraza, A.M., Gandhi, D., Ingebrandt, S., Moritz, W. and Schoning, M.J. (2011), "An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing", Biosens. Bioelectron., 26, 3023-3028.   DOI
3 Aksencer, T. and Aydogdu, M. (2012), "Forced transverse vibration of nanoplates using nonlocal elasticity", Phys. E, 44, 1752-1759.   DOI
4 Ansari, R., Arash, B. and Rouhi, H. (2011), "Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity", Compos. Struct., 93, 2419-2429.   DOI
5 Ansari, R. and Gholami, R. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electrothermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Appl. Mech., 8, 1650053.   DOI
6 Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comp. Mater. Sci., 51, 303-313.   DOI
7 Ansari, R., Rajabiehfard, R. and Arash, B. (2010), "Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets", Comput. Mater. Sci., 49, 831-838.   DOI
8 Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375, 53-62.   DOI
9 Ansari, R., Shahabodini, A. and Rouhi, H. (2015), "A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions", Curr. Appl. Phys., 15, 1062-1069.   DOI
10 Arash, B., Wang, Q. and Liew, K.M. (2012), "Wave propagation in graphene sheets with nonlocal elastic theory using finite element formulation", Comput. Meth. Appl. M., 223, 1-9.
11 Assadi, A. (2013), "Size dependent forced vibration of nanoplates with consideration of surface effects", Appl. Math. Model., 37, 3575-3588.   DOI
12 Assadi, A. and Farshi, B. (2010), "Vibration characteristics of circular nanoplates", J. Appl. Phys., 108, 074312.   DOI
13 Chen, J., Lim, B., Lee, E.P. and Xia Y. (2009), "Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications", Nano Today, 4, 81-95.   DOI
14 Grzelczak, M., Perez-Juste, J., Mulvaney, P. and Liz-Marzan, L.M. (2008), "Shape control in gold nanoparticle synthesis", Chem. Soc. Rev., 37, 1783-1791.   DOI
15 Clark, D., Wood, D. and Erb, U. (1997), "Industrial applications of electrodeposited nanocrystals", Nanostruct. Mater., 9, 755-758.   DOI
16 Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10, 425-435.   DOI
17 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710.   DOI
18 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248.   DOI
19 Fatemi, H., Khodadadi, A.A., Firooz, A.A., Mortazavi, Y. (2012), "Apple-biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor", Curr. Appl. Phys., 2, 1033-1038.
20 Huang, H., Chen, H., Sun, D. and Wang, X. (2012), "Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells", J. Power Sour., 204, 46-52.   DOI
21 Huang, H. and Wang, X. (2011), "Graphene nanoplate-$MnO_2$ composites for supercapacitors: a controllable oxidation approach", Nanoscale, 3, 3185-3191.   DOI
22 Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020.   DOI
23 Karlicic, D., Murmu, T., Cajic, M., Kozic, P. and Adhikari, S. (2014), "Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field", J. Appl. Phys., 115, 234303.   DOI
24 Ke, L. L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mech. Sinica, 30, 516-525.   DOI
25 Kiani, K. (2012b), "Magneto-elasto-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock", Phys. Lett. A, 376, 1679-1685.   DOI
26 Kiani, K. (2011a), "Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory", J. Sound Vib., 330, 4896-4914.   DOI
27 Kiani, K. (2011b), "Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: Theoretical formulations", Phys. E, 44, 229-248.   DOI
28 Kiani, K. (2012a), "Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models", Phys. E, 45, 86-96.   DOI
29 Kiani, K. (2012c), "Magneto-thermo-elastic fields caused by an unsteady longitudinal magnetic field in a conducting nanowire accounting for eddy-current loss", Mater. Chem. Phys., 136, 589-598.   DOI
30 Kiani, K. (2014a), "Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field", J. Phys. Chem. Solid., 75, 15-22.   DOI
31 Kiani, K. (2014b), "Elastic wave propagation in magnetically affected double-walled carbon nanotubes", Meccanica, 50, 1003-1026.
32 Kiani, K. (2014c), "Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes", Int. J. Mech. Sci., 87, 179-199.   DOI
33 Kiani, K. (2014d), "Revisiting free transverse vibration of embedded single-layer graphene sheets acted upon by an inplane magnetic field", J. Mech. Sci. Tech., 28, 3511-3516.   DOI
34 Kiani, K. (2014e), "Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories", Phys. E, 57C, 179-192.
35 Malekzadeh, P., Setoodeh, A.R. and Alibeygi Beni, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93, 1631-1639.   DOI
36 Lee, C.L., Chiou, H.P., Syu, C.M., Liu, C.R., Yang, C.C. and Syu, C.C. (2011), "Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction", Int. J. Hydrogen Energ., 36, 12706-12714.   DOI
37 Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529.   DOI
38 Malekzadeh, P. and Farajpour, A. (2012), "Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium", Acta Mech., 223, 2311-2330.   DOI
39 Mandal, U. and Pradhan, S.C. (2014), "Transverse vibration analysis of single-layered graphene sheet under magnetothermal environment based on nonlocal plate theory", J. Appl. Phys., 116, 164303.   DOI
40 Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. An., 16, 51-78.   DOI
41 Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound Vib., 331, 5069-5086.   DOI
42 Murmu, T., McCarthy, M.A. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded singlelayer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63.   DOI
43 Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model", Phys. E, 41, 1628-1633.   DOI
44 Wang, H., Dong, K., Men, F., Yan, Y.J. and Wang, X. (2010), "Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix", Appl. Math. Model., 34, 878-889.   DOI
45 Narendar, S. and Gopalakrishnan, S. (2012), "Temperature effects on wave propagation in nanoplates", Compos. Part B-Eng., 43, 1275-1281.   DOI
46 Narendar, S., Gupta, S.S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory", Appl. Math. Modell., 36, 4529-4538.   DOI
47 Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223.   DOI
48 Sewell, H. (2008), "Method for making a computer hard drive platen using a nano-plate", U.S. Patent No. 7, 409, 759.
49 Toupin, R.A. (1964), "Elastic materials with couple stresses", Arch. Ration. Mech. An., 11, 385-414.
50 Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on the longitudinal wave propagation in nanoplates", Phys. E, 42, 1356-1360.   DOI
51 Wang, X., Shen, J.X., Liu, Y., Shen, G.G. and Lu, G. (2012), "Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field", Appl. Math. Model., 36, 648-656.   DOI
52 Xie, H.J., Wang, X. and Li, Z. (2012), "Dynamic characteristics of multi-walled carbon nanotubes under longitudinal magnetic fields", Mech. Adv. Mater. Struct., 19, 568-575.   DOI
53 Cosserat, E. and Cosserat, F. (1909), Theorie des Corps Deformables, Hermann et Fils, Paris.
54 Zhong, L., Gan, S., Fu, X., Li, F., Han, D., Guo, L. and Niu, L. (2013), "Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic $H_2O_2$ biosensor", Electrochim. Acta, 89, 222-228.   DOI
55 Zhu, Y., Zhao, Q., Zhang, Y.H. and Wu, G. (2012), "Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water", Surf. Coat. Tech., 206, 2961-2966.   DOI