• Title/Summary/Keyword: Wavelets Transform

Search Result 110, Processing Time 0.033 seconds

Research of Compression Technique of Signal Using Wavelet Packet (웨이브렛 패킷을 이용한 신호의 함축기법에 관한 연구)

  • La, Kyung-Taek;Lee, Jin-Ha;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.594-596
    • /
    • 1999
  • It is extremely important to compress a very large multimedia data under the currently used communication networks because of the forthcoming high fast multimedia informations. Wavelets are very popular and useful mathematical tool in the field of signal processing recently. In this paper, signal compression methods using the wavelet packet transform are compared with the other compression method under same threshold condition. As the result, the compression of using the wavelet packet transform is much more effective than the other compressing methods.

  • PDF

A Study on the Method for Detecting of Leakage Point using Wavelet Transforms (웨이블릿 변환을 이용한 누전점 검출에 관한 연구)

  • Park, Keon-Woo;Kim, Il-Kwon;Kim, Jin-Su;Kim, Kwang-Soon;Kim, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.173-174
    • /
    • 2008
  • Wavelet transform is a new method for power system analysis. On the basis of extensive investigation, optimal mother wavelets for the detection of leakage current are chosen. The recommended mother wavelet is 'Daubechies 4' wavelet. This paper proposes a technique for modeling toe finding point of leakage current in distribution system using wavelet transform and EMTP MODELS.

  • PDF

INTRODUTION TO AN EFFICIENT IMPLEMENTATION OF THE SUBSTITUTE WAVELET INTENSITY METHOD FOR PANSHARPENING

  • Choi, Myung-Jin;Song, Jeong-Heon;Seo, Du-Chun;Lee, Dong-Han;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.620-624
    • /
    • 2007
  • Recently, Gonzalez-Audicana et al. proposed the substitute wavelet intensity (SWI) method which provided a solution based on the intensity-hue-saturation (IHS) method for the fusing of panchromatic (PAN) and multispectral (MS) images. Although the spectral quality of the fused MS images is enhanced, this method is not efficient enough to quickly merge massive volumes of data from satellite. To overcome this problem, we introduce a new SWI method based on a fast IHS transform to implement efficiently as an alternative procedure. In addition, we show that the method is well applicable for fusing IKONOS PAN with MS images.

  • PDF

A Pattern Recognition System Using 2D Wavelets and Second-Order Neural Networks (2D wavelet과 이차신경망을 이용한 패턴인식 시스템)

  • Lee, Bong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.473-478
    • /
    • 2001
  • Image processings using the two-dimensional wavelet transform (2DWT) have been a very active research area in recent years because the 2DWT possess many good properties. However, the discrete 2DWT can not be used for pattern recognition directly because it does not have the translation property. In this paper, we show why conventional discrete two-dimensional wavelet transforms cannot be used for pattern recognitions directly. Then, we propose a new method that makes it possible to use discrete 2DWT to pattern recognition without modification of standard pyramidal algorithms. The main idea of our method is to postprocess the wavelet transformed images using the second-order neural network. To justify the validity of the method, evaluations with test images were performed. The effectiveness of the method can be shown by the evaluation results.

  • PDF

Lossy Image Compression Based on Quad Tree Algorithm and Geometrical Wavelets (사분트리 알고리즘과 기하학적 웨이블렛을 이용한 손실 영상 압축)

  • Chu, Hyung-Suk;An, Chong-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2292-2298
    • /
    • 2009
  • In this paper, the lossy image compression algorithm using the quad tree and the bandlets is proposed. The proposed algorithm transforms input images by the discrete wavelet transform (DWT) and represents the geometrical structures of high frequency bands using the bandlets with a 8 block- size. In addition, the proposed algorithm searches the position information of the significant coefficients by using the quad tree algorithm and computes the magnitude and the sign information of the significant coefficients by using the Embedded Image Coding using Zerotrees of Wavelet Coefficients (EZW) algorithm. The compression result by using the quad tree algorithm improves the PSNR performance of high frequency images up to 1 dB, compared to that of JPEG-2000 algorithm and that of S+P algorithm. The PSNR performance by using DWT and bandlets improves up to 7.5dB, compared to that by using only DWT.

Wavelet operator for multiscale modeling of a nuclear reactor

  • Vajpayee, Vineet;Mukhopadhyay, Siddhartha;Tiwari, Akhilanand Pati
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.698-708
    • /
    • 2018
  • This article introduces a methodology of designing a wavelet operator suitable for multiscale modeling. The operator matrix transforms states of a multivariable system onto projection space. In addition, it imposes a specific structure on the system matrix in a multiscale environment. To be specific, the article deals with a diagonalizing transform that is useful for decoupled control of a system. It establishes that there exists a definite relationship between the model in the measurement space and that in the projection space. Methodology for deriving the multirate perfect reconstruction filter bank, associated with the wavelet operator, is presented. The efficacy of the proposed technique is demonstrated by modeling the point kinetics nuclear reactor. The outcome of the multiscale modeling approach is compared with that in the single-scale approach to bring out the advantage of the proposed method.

Introduction of a Fast Substitute Wavelet Intensity Method to Pan-sharpening Technique

  • Choi, Myung-Jin;Song, Jeong-Heon;Seo, Du-Chun;Lee, Dong-Han;Lim, Hyo-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.347-353
    • /
    • 2007
  • Recently, $Gonz\acute{a}lez-Aud\acute{i}cana$ et al. proposed the substitute wavelet intensity(SWI) method which provided a solution based on the intensity-hue-saturation(IHS) method for the fusing of panchromatic(PAN) and multispectral(MS) images. Although the spectral quality of the fused MS images is enhanced, this method is not efficient enough to quickly merge massive volumes of data from satellite. To overcome this problem, we introduce a new SWI method based on a fast IHS transform to implement efficiently as an alternative procedure. In addition, we show that the method is well applicable for fusing IKONOS PAN with MS images.

PREDICTION OF FAULT TREND IN A LNG PLANT USING WAVELET TRANSFORM AND ARIMA MODEL

  • Yeonjong Ju;Changyoon Kim;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.388-392
    • /
    • 2009
  • Operation of LNG (Liquefied Natural Gas) plants requires an effective maintenance strategy. To this end, the long-term and short-term trend of faults, such as mechanical and electrical troubles, should be identified so as to take proactive approach for ensuring the smooth and productive operation. However, it is not an easy task to predict the fault trend in LNG plants. Many variables and unexpected conditions make it quite difficult for the facility manager to be well prepared for future faulty conditions. This paper presents a model to predict the fault trend in a LNG plant. ARIMA (Auto-Regressive Integrated Moving Average) model is combined with Wavelet Transform to enhance the prediction capability of the proposed model. Test results show the potential of the proposed model for the preventive maintenance strategy.

  • PDF

Improvement of Double Density Discrete Wavelet Transformation with Enhancement of Directional Selectivity (방향의 선택성 향상을 통한 이중 밀도 이산 웨이브렛 변환의 성능 개선)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.221-232
    • /
    • 2012
  • The double-density discrete wavelet transform(DWT) is an improvement upon the critically sampled DWT with important additional properties. It employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is overcomplete by a factor of two. Also, this transformation is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. Proposed method is a DWT that combines the double-density DWT and quincunx sampling, each of which has its own characteristics and advantages. Especially, the quincunx sampling treats the different directions more homogeneously. As a result, since proposed method can generate sub-images of multiple degrees rotated versions, this method provides an improved performance in image processing fields.

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.