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a b s t r a c t

This article introduces a methodology of designing a wavelet operator suitable for multiscale modeling.
The operator matrix transforms states of a multivariable system onto projection space. In addition, it
imposes a specific structure on the system matrix in a multiscale environment. To be specific, the article
deals with a diagonalizing transform that is useful for decoupled control of a system. It establishes that
there exists a definite relationship between the model in the measurement space and that in the pro-
jection space. Methodology for deriving the multirate perfect reconstruction filter bank, associated with
the wavelet operator, is presented. The efficacy of the proposed technique is demonstrated by modeling
the point kinetics nuclear reactor. The outcome of the multiscale modeling approach is compared with
that in the single-scale approach to bring out the advantage of the proposed method.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A nuclear reactor is a complex time-varying system exhibiting
multi-timescale dynamics owing to its large dimensions. This
behavior becomes more evident as the system operates through
different power regimes. It is well known that modeling using
single-scale approach leads to ill-conditioning [1]. Over the years,
different approaches have been proposed using two-timescale or
three-timescale properties to solve the modeling and control
design problem [2e4]. In this work, multiscale property of wavelet
basis is used to address the issue.

Some works have been reported for modeling, designing
controller, and analyzing dynamic properties of nuclear plants us-
ing single-scale approaches such as Auto-Regressive with Exoge-
nous input (ARX), Auto-Regressive Moving Average with
Exogenous input, output error (OE), and Subspace methods. For
instance, Boroushaki et al. [5] used ARX model for identification of
reactor core. Parametric modeling approaches (ARX, Auto-Regres-
sive Moving Average with Exogenous, and OE) require that the
model structure of the process be known a priori. These techniques
may not guarantee global minimum. Furthermore, their complexity

increases with the order of the system to be estimated. On the other
hand, subspace methods are robust, computationally efficient, and
free from nonconvergence issues. They have been used in nuclear
spectroscopy to identify the poles of a system [6] and for the
identification of light charged particles [7]. However, multiscale
features may not be modeled correctly by the previously discussed
techniques. Therefore, it is essential to conduct process visualiza-
tion and modeling exercise in a multiresolution framework.

Multiscale behavior of a process can be suitably modeled using
generalized basis functions in specific wavelet basis functions. The
primary advantage of wavelet basis attributes is their ability to
estimate a set of low-order linear models of a nonlinear or a mul-
tiple timescale system. This is equivalent to breaking down a
complex problem into a number of relatively simpler problems,
each seen at an appropriate resolution. The idea central to this class
of modeling methodology is the invocation of multiresolution
analysis (MRA) in data-driven modeling. MRA with wavelet basis
functions was first introduced by Mallat in his pioneering work [8].
The last three decades have seen a number of research works
dealing with identification of deterministic and stochastic systems
from inputeoutput data projected on wavelet basis functions
[9e14]. Most existing works in the literature have reported iden-
tification of linear time-varying models that attempt to linearly
approximate the system output although wavelets are known to
provide near-optimal nonlinear estimates of signals. Moreover, all
the aforementioned techniques seem to have ignored well-
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established filter bank theory for output synthesis and have relied
more on the linear function approximation approach with wavelet
basis, relegating the techniques to off-line identification of the
process models. Furthermore, state-space models suitable for
designing state feedback control are very rarely found. The limi-
tations of existing techniques justify the need for the development
of wavelet operators to transform system states in projection space.

Wavelet-based techniques have found wide application in nu-
clear engineering for noise removal [15e17], transient detection
[18,19], and modeling and control [20e23]. Heo et al. [15] designed
a wavelet-PCAebased denoising scheme for the estimation of
thermal power. Park et al. [16] demonstrated the application of
wavelet denoising inwater-level control of steam generators. In the
study by Vajpayee et al. [17], the authors applied wavelets to
improve the control performance of a predictive controller.
Espinosa-Paredes et al. [18] studied transient instability phenom-
enon of neutronic power oscillation in a boiling water reactor using
wavelet transform. Prieto-Guerrero and Espinosa-Paredes [19]
applied wavelet ridges technique for estimation of decay ratio
and to further evaluate stability parameters using real neutronic
measurements. In the study by Antonopoulos-Domis and Tam-
bouratzis [20], a power spectral densityebased system identifica-
tion strategy is designed during a transient via wavelet MRA.
Integration of wavelet MRA with correlation function has been
proposed for the determination of stability of a reactor [21]. Mini-
mum memory ARX model with wavelet projections has been
developed for liquid zone control system [22]. Recently, a subspace-
based approach for multiscale modeling of the reactor core is
proposed by Vajpayee et al. [23].

State-space modeling of a system is fundamental to designing of
Kalman filter, which has several applications in nuclear reactor
process estimation [6,7,23,24]. Hong et al. [25] proposed Kalman
filtering in a multiresolution framework implemented over data
blocks and demonstrated that it outperforms the classical Kalman
filtering technique. However, algorithm complexity increases
drastically due to simultaneous decomposition and reconstruction
steps. Nounou and Nounou [26] developed multiscale Kalman
filtering using nonadaptive wavelet transform in which it is shown
that the model structure remains unaltered across all scales, pro-
vided analysis wavelets for all states are identical. Generally, in a
multiscale system, different dynamic modes evolve at various
scales of time, and use of the same model at different detail/
approximation space would be rather limiting. It would cause
derivation of high-order models leading to large approximation
error. The proposed technique suggests use of different wavelet
basis functions for different modes/states suitably selected to
minimize modeling error. In addition, wavelet operators are
designed to impose certain specific structure on the system matrix
in projection space. The proposed technique diagonalizes the sys-
temmatrix to decouple systemmodes completely for application of
independent control actions along the Eigen functions [27].
Furthermore, the technique may be used for designing on-line
estimation/control because wavelet-based modeling approach
identifies a system with a set of multiscale minimum memory
models that are amenable to real-time application. Moreover, for
on-line applications of multi-timescale processes, it is often more
meaningful to work with models at appropriate scales.

The present article formulates a state-space model with
wavelet states for a multivariable system. It proves that one can
work with a diagonalized state-space model in wavelet subspaces
as well. In other words, the methodology works by embedding in
a wavelet operator the ability of extracting cross-correlation
across variables. Wavelet operators are designed to systemati-
cally orchestrate the evolution of a system model across scales. In
fact, the proposed method can be seen as an alternative solution

to the problem posed in the study by Chou et al. [9] with a
generalization of imparting additional constraints on the synthesis
model that qualifies it as a wavelet operator. Although the present
formulation is derived in a deterministic setup, it can be readily
adopted in a stochastic framework. The methodology of designing
a wavelet operator is explained with simulations. Application of
the proposed technique for modeling a nuclear reactor from
measurements is demonstrated. Furthermore, the derived pro-
jection space model is validated with new sets of measurements.
Some case studies with different validation datasets show the
advantage of proposed approach over classical approach of mea-
surement space modeling.

The rest of the article is organized as follows: Section 2 in-
troduces the notations used in this work and defines local diago-
nalizing transform. Section 3 establishes relationship between
models in measurement space and those in projection space. It
further presents the design of multirate perfect reconstruction fil-
ter bank. Section 4 shows application of the proposed methodology
on a point kinetics model of a nuclear reactor. Section 5 discusses
major achievements of the work and indicates future scope.

2. Wavelet operator

2.1. Notations

System input u(t) and output y(t) are defined in Hilbert space L2
of real-valued square-integrable functions. Discrete measurements
u[k] and y[k], respectively, of input and output belong to l2, the
vector space of square-summable sequences. Measurements uwj ½k�=
uvj ½k� and ywj ½k�=yvj ½k� are considered to be projections of u[k] and y[k]

on wavelet basis/scaling functions at any resolution 2�j. Wavelet
basis functions and scaling functions span the vector space L2.
Sequence fVjgj2Z of closed subspaces of L2 is denoted as a multi-
resolution approximation with difference space Wj satisfying
Vjþ14Wjþ1 ¼ Vj, for all j, 4 denoting direct sum of the subspaces.

Let us consider a discrete, linear time invariant (LTI), single input
single output, multivariate system of order N, given by one-step-
ahead state-space model

x½kþ 1� ¼ Ax½k� þ Bu½k�;ck; (1)

where A2ℝN�N, B2ℝN�1, and x2ℝN, respectively, denote system
dynamics matrix, input matrix, and state vector. A sequence xvj ðxwj Þ
belongs to Vj(Wj) at any resolution 2�j while x[k] is considered
measurable in V0. Operators projecting onto the respective sub-
spacesWj(Vj) are also denoted by the same notationWj(Vj). Let xvj ½k�
be the kth sample of state vector and xvij½k� the ith state variable in

xvj ½k�.
Let us denote the state-space model in Vj by ðAv

j ; B
v
j Þ. The state

equation in Vj at resolution 2�j is written as

xvj ½kþ 1� ¼ Av
j x

v
j ½k� þ Bvj u

v
j ½k�;ck; (2)

or in an expanded form as

2
664
xv1j½kþ 1�
xv2j½kþ 1�

«
xvNj½kþ 1�

3
775 ¼ Av

j

2
664
xv1j½k�
xv2j½k�
«

xvNj½k�

3
775þ Bvj u

v
j ½k�;ck: (3)

In this article, we actually deal with operators with truncated
support of length equal to number of states, and hence, let us define
the N � N regression matrix at resolution 2�j as
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Xj½k� ¼

2
664
xv1j½k� xv1j½k� 1� / xv1j½k� N þ 1�
xv2j½k� xv2j½k� 1� / xv2j½k� N þ 1�
« « 1 «

xvNj½k� xvNj½k� 1� / xvNj½k� N þ 1�

3
775; (4)

and 1 � N input matrix at resolution 2�j as

Uj½k� ¼
h
uvj ½k�«uvj ½k� 1�«/«uvj ½k� N þ 1�

i
; (5)

such that the state-space description of a system in terms of
regression matrix Xj[k] can be written as

Xj½kþ 1� ¼ Av
j Xj½k� þ Bvj Uj½k�;ck; (6)

where Av
j is N � N matrix and Bvj is N � 1 column vector. While

elements in a row of Xj are considered to have temporal corre-
lation, it is assumed that the elements in a column are correlated
spatially. One of the objectives of the transformation is to make
this spatial correlation evident by resolving the states of the
system on a new set of basis. For this work, it is considered that
the change of basis diagonalizes Av

j i.e., it completely decorrelates

spatially. Primary advantage of such a transformation is that the
application of control input along the direction of one basis
would only affect the state projected on the same basis.
Returning to the formulation of the output equation, we can
simply write

Yj½k� ¼ Cv
j Xj½k�; (7)

where Yj½k� ¼ ½yvj ½k�«yvj ½k� 1�«/«yvj ½k� N þ 1�� and Cv
j is a 1 � N row

vector.

2.2. Local diagonalizing transform

A local operator matrix is defined as a matrix that locally
transforms system states from one resolution to another operating
on the finite length regressor. To be more specific, it operates on the
regression matrix at any resolution 2�j to give states in the differ-
ence space Wjþ1. Let us now define the separable local diagonal-
izing transform as

xwjþ1½k� ¼ E
�
WX

j X
T
j ½k�

�
; (8)

where local operator WX
j is also defined as an N � N matrix

WX
j ¼

2
664
w11 w12 / w1N
w21 w22 / w2N
« « 1 «

wN1 wN2 / wNN

3
775: (9)

Operator E ð:Þ extracts the diagonal elements of the operand
matrix and arranges them in a column. Note that xwjþ1½k� is a column

vector having diagonal elements of WX
j X

T
j ½k�, i.e.,

xwjþ1½k� ¼

2
664

w11x
v
1j½k� þw12x

v
1j½k� 1� þ/w1Nx

v
1j½k� N þ 1�

w21x
v
2j½k� þw22x

v
2j½k� 1� þ/w2Nx

v
2j½k� N þ 1�

«
wN1x

v
Nj½k� þwN2x

v
Nj½k� 1� þ/wNNx

v
Nj½k� N þ 1�

3
775:

(10)

The local operator transforms input and output vector as

Uw
jþ1½k� ¼ WX

j U
T
j ½k�; Yw

jþ1½k� ¼
�
WX

j Y
T
j ½k�

�T
; (11)

where Uw
jþ1 is N � 1 column vector and Yw

jþ1 is 1 � N row vector.

Rows of the local operatorWX
j , defined as an N � Nmatrix, play the

role of wavelet filters. Let us also define the local inverse operator

matrix ðWX
j Þ

�1
such that ðWX

j Þ
�1

WX
j ¼ I. Computation of each state

variable by application of local diagonalizing transform requires N
multiplications, where N is the order of the system.

It should be clearly understood at the outset that WX
j is a local

operator that operates on the approximation (indicated by super-
script v) at resolution 2�j to produce details (indicated by super-
scriptw) at resolution 2�(jþ1) . Therefore, ðAv

j ;B
v
j Þmodels the system

in Vj, whereas ðAw
jþ1;B

w
jþ1Þ in Wjþ1. Section 3 establishes a relation

between ðAv
j ;B

v
j Þ and ðAw

jþ1;B
w
jþ1Þ.

3. State-space model in transform domain

Consider the state-space description given by (6),

XT
j ½kþ 1� ¼ XT

j ½k�
�
Av
j

�T þ UT
j ½k�

�
Bvj
�T

: (12)

Projection onto wavelet space is achieved by first premultiply-
ing by WX

j and then applying operator E ð,Þ on both sides of (12),

i.e.,

E
�
WX

j X
T
j

h
kþ1

i�
¼E

�
WX

j X
T
j

�
k
��

Av
j

�T�þE

�
WX

j U
T
j

�
k
��

Bvj
�T�

:

(13)

The equivalent state equation in Wjþ1 space is given by

xwjþ1½kþ 1� ¼ Aw
jþ1x

w
jþ1½k� þ Bwjþ1U

w
jþ1½k�; (14)

with

Aw
jþ1 ¼

��
WX

j

�T��1
X�1
j ½k�Av

j Xj½k�
�
WX

j

�T
; (15)

and Bwjþ1 is defined as

Bwjþ1W
X
j U

T
j ½k� ¼ E

�
WX

j U
T
j ½k�

�
Bvj
�T�

: (16)

Note that Aw
jþ1 and Bwjþ1 are defined to be diagonal matrices so

that

Aw
jþ1E

�
WX

j X
T
j ½k�

�
¼ E

�
Aw
jþ1W

X
j X

T
j ½k�

�
; (17)

Bwjþ1 ¼ D
�
Bvj
�
: (18)

OperatorD ð,Þ arranges the elements of a vector operand along
the diagonal of a diagonal matrix. Observe that D ð,Þ would
accomplish the reverse operation of E ð,Þ i.e., it would give back
the original matrix only if it is diagonal to start with. By obser-
vation, one can state that the sufficient condition that would
satisfy (13) is
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Xj½kþ 1� ¼ Xj½k�
�
WX

j

�T
Aw
jþ1

��
WX

j

�T��1

þ
�
D
�
Bwjþ1W

X
j U

T
j ½k�

��T��
WX

j

�T��1

;

(19)

subject to the condition thatWX
j is invertible. System parameters in

Vj and those in Wjþ1 are then related as

Aw
jþ1 ¼

��
WX

j

�T��1
Av
j

�
WX

j

�T
; (20)

where Av
j ¼ X�1

j ½k�Av
j Xj½k� and Bvj ¼ Bvj . An important implication of

Equations (14)e(20) is that one can work with a state-space model
having a specific structure in projection space, spanned by local
diagonalizing basis, as well. In addition, given a local diagonalizing
operator, there exists a definite relationship between the model in
measurement space and that in projection space. This formulation
is fundamental to the design of a wavelet operator for multiscale
modeling. Because Aw

jþ1 is diagonal, to ensure controllability of the

transformed system, column vector Bwjþ1 should not have any zero

row.
In practice, E ðWX

j X
T
j ½k�Þ is implemented by appropriately

designing analysis multirate filter bank associated with a wavelet
operator. The derived relationship between Av

j and Aw
jþ1 signifies the

data-dependent or adaptive nature of the local diagonalizing
transform. This is expected because the transform is designed to
meet the objectives locally, and hence, the operator is data
dependent. However, the basic structure of the operator matrix
remains invariant. On the contrary, wavelet transform, in its basic
form, is nonadaptive in nature. Later in this article, the factorization
of local diagonalizing operator matrix into a nonadaptive and an
adaptive matrix is investigated. Furthermore, the design of a
nonadaptive operator matrix that qualifies as a wavelet transform
operator is also derived.

The output relation in projection space is derived as follows.
Taking the transpose of the output, Equation (7) gives

YT
j ½k� ¼ XT

j ½k�
�
Cv
j

�T
: (21)

Premultiplying both sides of (21) by WX
j gives

WX
j Y

T
j ½k� ¼ WX

j X
T
j ½k�

�
Cv
j

�T
: (22)

Using (8) and (11), the previous equation can be written as

�
Yw
jþ1½k�

�T ¼ D
�
xwjþ1½k�

�
R�1

�
Cv
j

�T
; (23)

or simply

Yw
jþ1½k� ¼ Cv

j

�
R�1

�T
D
�
xwjþ1½k�

�
; (24)

where R ¼ ðWX
j X

T
j Þ

�1
D ðE ðWX

j X
T
j ÞÞ and Cw

jþ1 ¼ Cv
j ðR�1ÞT . Let us

define ywjþ1½k� ¼ Yw
jþ1½k�Z, where Z ¼ ½1 1 / 1 �T . Now (24) can

be written as

ywjþ1½k� ¼ Cw
jþ1x

w
jþ1½k�: (25)

3.1. Design of a nonadaptive wavelet operator matrix

A careful look at (20) reveals that the rows of the matrix

ððWX
j Þ

T Þ
�1

are the left eigenvectors of A
v

j and diagonal elements of

Aw
jþ1 are the corresponding eigenvalues. Let

Aw
jþ1 ¼ diag½a1 a2 / aN �; (26)

where a1; a2;/; aN are nonzero distinct eigenvalues. Any linear

transformation ððWX
j Þ

T Þ
�1

, satisfying

Aw
jþ1 ¼

��
WX

j

�T��1
Av
j

�
WX

j

�T
; (27)

can in general be given by [28]

��
WX

j

�T��1

¼ W jV j0
�
WX

j

�T ¼ V �1
j W �1

j : (28)

One possible choice is V �1
j ¼ Qj ¼ ½Bvj ;Av

j B
v
j ;/;Av

j
N�1

B
v
j � with

Qj
~Aj ¼ Av

j Qj where

~Aj ¼

2
66664

0 0 / �aN
1 0 / �aN�1
0 1 / �aN�2
« « 1 «
0 0 / �a1

3
77775: (29)

here, ða1;/; aNÞ are the coefficients of the characteristic poly-
nomial Aj. Matrix Qj depends on Av

j ð¼ X�1
j ½k�Av

j Xj½k�Þ and needs to be

recomputed adaptively at each k. If the system is controllable, then
Qj is of rank N. Moreover, this article does not deal with uncon-
trollable systems.

With the choice of Qj given previously, it is elementary to show

that the linear transformation W j satisfying Aw
jþ1W j ¼ W j

~A is the

product of a diagonal matrix (M ) and the Vandermonde matrix
(refer Appendix A).

W j ¼ M

2
664
1 a1 / aN�1

1
1 a2 / aN�1

2
« « 1 «
1 aN / aN�1

N

3
775; (30)

where M ¼ diag ½m1 m2 / mN�, in which m1; m2;/; mN2R .
In specific, matrix M can be taken as an identity matrix. MatrixW j

is translation invariant because Av
j is similar to Av

j and has the same

eigenvalues as that of Av
j .W j is of rank N if all the eigenvalues of Av

j

are distinct. Because both V j and W j are of rank N, WX
j is also of

rank N and is invertible.
Any system ðAv

j ;B
v
j Þ if state controllable in measurement space

can be transformed into the controllable form ð~Aj;
~BjÞ. Hence,

without any loss of generality, one can work with the system

described by ð~Aj;
~BjÞ. In such a case, local diagonalizing operatorWX

j

is independent of data (translation invariant) and is denoted by ~W
X
j .

��
~W

X
j

�T��1

¼ W j0
~W

X
j ¼

�
W �1

j

�T
: (31)
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It may be observed that although translation invariant, ~W
X
j is not

scale invariant as it depends on the eigenvalues at that resolution.

3.2. Design of analysis high-pass filter

In this subsection, an approach to design analysis high-pass
filter (HPF) is presented for a general third-order discrete-time
system. A third-order system is nontrivial and would bring out
salient features of the design methodology. This is a crucial step as
the design of analysis HPF further leads to full filter bank imple-
mentation. Let M ¼ I, then the operatorW j for the system is given
by

W j ¼ M

2
64
1 a1 a21
1 a2 a22
1 a3 a23

3
75: (32)

From (31) and (32),

~W
X
j ¼ 1

D

2
64
a2a3ða3 � a2Þ

�
a22 � a23

	 ða3 � a2Þ
a1a3ða1 � a3Þ

�
a23 � a21

	 ða1 � a3Þ
a1a2ða2 � a1Þ

�
a21 � a22

	 ða2 � a1Þ

3
75; (33)

and D is determinant of W j. Note that all columns of ~W
X
j add up to

zero, except for the first column. Hence, all but the first column
qualify to be the high-pass analysis filter in a wavelet filter bank.
This automatically satisfies the admissibility condition that the
Fourier transform of the filter is zero at zero frequency [8]. Values of
filter coefficients originating from the first column are suitably
augmented to satisfy the admissibility condition.

Every rowof ð ~WX
j Þ

T
plays the role of half band high-pass analysis

filter g[�k] in two-channel perfect reconstruction multirate filter
bank i.e.,

gi½ � k� ¼
�
~W

X
j

�T
ik
: (34)

Other half band filters in the filter bank, i.e., analysis low pass h,

synthesis high-pass ~g, and synthesis low pass ~h filters, can be
designed by satisfying biorthogonality condition thereby giving the
full filter bank structure. This is explained in Section 3.3 and further
derived in Appendix B.

3.3. Design of two-channel biorthogonal filter bank

The approximation spaces fVjgj2Z and difference
spaces fWjgj2Z are spanned by integer translates of scaling and
wavelet basis functions, respectively. The basic dilation equation
defines synthesis scaling function ~f and synthesis wavelet function
~j through two-scale difference equation

1ffiffiffi
2

p ~f

�
t
2

�
¼
Xþ∞

k¼�∞

~h½k�~fðt � kÞ; (35)

1ffiffiffi
2

p ~j

�
t
2

�
¼
Xþ∞

k¼�∞

~g½k�~fðt � kÞ: (36)

Analysis scaling function fð,Þ and analysis wavelet function jð,Þ
are related to h[k] and g[k], respectively, through similar relations.
Projections onto fVjgj2Z and fWjgj2Z are implemented using the
analysis filter bank. Analysis and synthesis filters need to satisfy

biorthogonality and perfect reconstruction conditions. The syn-
thesis filter design takes care of alias cancellation thereby resulting
in perfect reconstruction. These conditions are summarized in the
following.

1) Biorthogonality condition, i.e.,

〈~h½k�;h½k� 2l�〉 ¼ d½l�;

〈~g½k�; g½k� 2l�〉 ¼ d½l�;

〈~h½k�; g½k� 2l�〉 ¼ 〈~g½k�; h½k� 2l�〉 ¼ 0:

2) Perfect reconstruction condition

g½k� ¼ ð�1Þð1�kÞ~h½1� k�;

~g½k� ¼ ð�1Þð1�kÞh½1� k�:
It may be noted here that perfect reconstruction condition

essentially leads to biorthogonality condition. For a decimated
wavelet transform, wavelet coefficients or wavelet states in next
lower resolution are obtained by downsampling of analysis and
synthesis filters' outputs by two. Furthermore, filter banks can be
designed to have desired number of vanishing moments with
compact support. Awavelet function j(t) is said to have K vanishing
moment if the associated scaling function can generate poly-
nomials up to degree K�1. This condition is given as

Zþ∞

�∞

tmjðtÞdt ¼ 0;m ¼ 0;1;/;K � 1: (37)

When designing the filter bank, the vanishing moment
constraint is used in addition to the biorthogonality and perfect
reconstruction conditions. An analytical example of perfect recon-
struction biorthogonal wavelet filter bank (PRBWFB) design is
given in Appendix B.

3.4. Proposed algorithm

The proposed methodology of multiscale system modeling uses
translation invariant but scale adaptive basis functions that
completely decorrelate system states in transform domain. Design
of this class of wavelet filter bank is based on the nominal model of
the system identified in approximation space. Fig. 1 provides a
block diagram of the proposed technique. Steps to obtain a multi-
scale model are listed below.

1) Identify a low-order LTI model ðbAv

j ;
bBv

j ;
bC v

j Þ in approximation
space Vj. One can use numerically stable subspace methods to
estimate dynamic linear state-space model in deterministic/
stochastic setup [6,7,29].

2) Compute transformation Av
j ¼ X�1

j ½k�Av
j Xj½k�.

3) Compute eigenvalues and coefficients of PRBWFB at resolution
2�j.

4) Operate on states of the transformed system ðAv
j ;B

v
j Þ in Vj to

obtain states of ðAv
jþ1;B

v
jþ1Þ in Vjþ1 and that of ðAw

jþ1;B
w
jþ1Þ in

Wjþ1.
5) Estimate ðbAw

jþ1;
bBw
jþ1;

bCw
jþ1Þ. The nominal model may be obtained

by (15) and (18).
6) Repeat steps 1e5 until j þ 1 ¼ J, where 2�J is minimum reso-

lution [8, 23].
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At the end, the multiscale model would consist of a set of LTI
models in approximation space VJ and in wavelet spaces
Wj, j ¼ 1, 2, /, J.

4. Application to nuclear reactor

A nuclear reactor is a complex, nonlinear, multiscale process in
which different dynamic modes occur at different time scales.
These modes are actually present in the form of clusters, and a
reactor is predominantly a two-timescale system [4]. A cluster of
modes lying near the origin on the s-plane governs the slow dy-
namics of the process, whereas the second cluster lying away from
the origin is responsible for the fast dynamics. The transient
behavior of a nuclear reactor is described by point kinetics model
which is a system of nonlinear coupled differential equations. These
equations relate the time evolution of reactor power and concen-
tration of delayed neutron precursors with reactivity. The point
kinetics model is given by

dPðtÞ
dt

¼
�
rðtÞ � b

L

�
PðtÞ þ

X6
i¼1

liCiðtÞ; (38)

dCiðtÞ
dt

¼ bi
L
PðtÞ � liCiðtÞ; i ¼ 1;2;/;6 (39)

where r is reactivity; P is reactor power; L is prompt neutron life
time; and li, Ci, and bi are decay constant, concentration of delayed
neutron precursors', and fraction of delayed neutrons of ith group,
respectively. The delayed neutron parameters for Uranium-235 are
given in Table 1. The steady-state value of power P0 is set to unity,
and L is 0.001.

In the following subsections, simulations were performed for
two different cases: 1) using reference dataset and 2) using plant
dataset. In Section 4.1, an estimation/validation dataset is generated
by exciting the point kinetics model with reactivity variation as an
input and the corresponding power variation thus obtained as the
output of the system. On the other hand, in Section 4.2, plant

datasets obtained from a 540 MWe Indian pressurized heavy water
reactor are used for estimation/validation exercise.

4.1. Case study using reference dataset

To develop a wavelet operator for analysis and synthesis and to
further model the reactor in projection space, the system given by
Equations (38) and (39) needs to be represented in standard state-
space form as

_xðtÞ ¼ FxðtÞ þ GuðtÞ; (40)

where the state vector x, matrix F, and vector G are defined as

x ¼ ½ P C1 C2 C3 C4 C5 C6 �T ; (41)

F ¼

2
666666664

�b=L l1 l2 l3 l4 l5 l6
b1=L �l1 0 0 0 0 0
b2=L 0 �l2 0 0 0 0
b3=L 0 0 �l3 0 0 0
b4=L 0 0 0 �l4 0 0
b5=L 0 0 0 0 �l5 0
b6=L 0 0 0 0 0 �l6

3
777777775
;G ¼

2
6666666666666664

rP0
L

0

0

0

0

0

0

3
7777777777777775

:

(42)

Substituting the values of parameters given in Table 1, the open-
loop poles of the reactor system described by (40) are observed to
be located at

s ¼ ½0;�0:0143;�0:0678;�0:1929;�0:9970;�2:8318;�6:9953�:
(43)

Equations (40)e(42) however are the continuous time model.
The discrete-time system representation is given by (1) with

A ¼ eFTs ;B ¼
ZTs

0

eFtGdt; (44)

where Ts is the sampling period for discretization. The z-domain
counterpart of the s-domain poles, for a sampling period of 80 ms,
is given by

Data/System 
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State space 
model 

(Measurement 
Space)

System 
transforma�on 
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Filter 
coefficient 

es�ma�on & 
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design
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State space 
model 
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(detail)
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(analysis)
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Input/
output 
dataset

Output 
Predic�on

Fig. 1. Block diagram of the proposed projection space modeling technique.
PRBWFB, perfect reconstruction biorthogonal wavelet filter bank.

Table 1
Delayed neutron parameters for U-235.

Group, i 1 2 3 4 5 6

li(s�1) 0.0124 0.0305 0.1114 0.3013 1.1286 3.013
bi 0.000215 0.001424 0.001274 0.002568 0.000748 0.000273
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z ¼ ½0:5714;0:7973;0:9233;0:9847;0:9946;0:9989;1�: (45)

To find a relation between input, output, and state variables, the
system is excited with a known input signal. One of the ways to
change input reactivity to the reactor system is by movement of
control rod (CR). It may be noted that insertion of CR from its
nominal position introduces negative reactivity which decreases
reactor power, whereas withdrawal of CR from its nominal position
introduces positive reactivity which increases reactor power. The
input reactivity transient is supplied to the point kinetics model of
the nuclear reactor to generate variation in the reactor power
output. Fig. 2 shows the change in reactivity test input introduced
by CR rod movement, and the corresponding reactor power is
shown in Fig. 3.

Wavelet operators ~W
X
j are designed using (31) as described in

Subsections 3.2 and 3.3. Observe that columns of ~W
X
j play the role

of analysis HPF with zero DC gain. These HPFs are used to design
synthesis low-pass filters (LPF) by using perfect reconstruction
condition. The biorthogonality condition is used to obtain analysis
LPF and synthesis HPF. In general, the HPF coefficients obtained by
(34) are not symmetric and may cause system of simultaneous
equations to be underdetermined. To complete the design of
PRBWFB, it is required to have one more design equation. While
selecting wavelets for function approximation and to have a sparse
representation, the choice is made based on the regularity of the
basis function that decides number of vanishing moments and
support size. The vanishing moment condition is included as an
additional design constraint. The PRBWFBs are designed to have
length of eight taps and two vanishing moment as given in Table 2.
Measurement space system states are transformed by these oper-
ators to those in the projection space, and model parameters are
estimated. System dynamics matrix of estimated projection space
model is given by Aw

jþ1

Aw
jþ1 ¼ diag½0:6031; 0:7840; 0:9257; 0:9843; 0:9947;

0:9989;1�: (46)

Different conventional empirical modeling approaches, e.g., SID,
ARX, and OE, have also been implemented. The model parameters
are estimated from training dataset (Figs. 2 and 3) by minimizing
Akaike's Information Criterion. The estimated model parameters
are derived in Appendix C. Fig. 3 compares the estimates of the
neutron power output obtained by various models with the
observed data. It can be observed that all of the models are able to
estimate neutron power well enough. However, multiscale features
might not have been suitably modeled by any of the single-scale
models. A projection spacemodel is expected to sufficiently capture
the multiscale process dynamics due to modeling at appropriate
scale. Moreover, the fact that the underlying process is nonlinear in
nature while all of the estimated models are linear adds to the error
in the output.

For the purpose of model validation, two validation datasets
have been selected whose dynamics are different from that of the
estimation dataset. Furthermore, to demonstrate the efficacy of the
proposed techniques, a quantitative comparison with the existing
technique has been presented. Validation test inputs shown in
Figs. 4 and 6 represent ramp and trapezoidal variations in the
reactivity introduced by the movement of CR inside the reactor.
They are applied to different estimated models. Outputs of all
models are comparedwith the reference output in Figs. 5 and 7. It is
evident that the projection space model shows a better response
than the other models.

The modeling performance is quantitatively assessed by
computing the percentage mean squared error (PMSE). PMSE be-
tween simulation and output observation is calculated by

PMSEð%Þ ¼
 
1
N

XN�1

k¼0

�
P½k� � bP ½k��2

!
� 100: (47)

Table 3 shows the value of PMSE in output simulation for
different estimated models. The projection space model gives
less PMSE in output, for estimation and with different validation
datasets, than the other single-scale techniques. The small value
of PMSE indicates good modeling performance and enhanced
prediction ability of the proposed approach. The estimated
model in projection space is able to capture all the system dy-
namics better due to the fact that it efficiently estimates the
multiscale modes evolving at different timescale. On the other
hand, single-scale techniques are able to estimate only an
approximate model of the multiscale process thereby giving
larger PMSE.

4.2. Case study using plant dataset

This subsection presents model estimation/validation exercise
on transient dataset obtained from 540 MWe Indian pressurized
heavy water reactor. The plant dataset includes reactor power as
output and water level in zonal control compartment (ZCC) as
input. The inflow variations in ZCC water level cause reactivity
variations which result in changes in reactor power. Figs. 8 and 9,
respectively, show variation in reactivity due to change in water
level in ZCC and the corresponding variation in power.

Wavelet operators are designed as described in Subsections 3.2
and 3.3; this leads to the design of full PRBWFBs. The PRBWFBs are
designed to have length of six taps and two vanishing moments as
given in Table 4. The original measurement space system states are
transformed by these operators to those in the projection space,
and model parameters are estimated. System dynamics matrix of
estimated projection space model is given by Aw

jþ1

0 40 80 120 160 200

−1

0

1
x 10−4

Time (s)

Re
ac

tiv
ity

Fig. 2. Variation of reference reactivity estimation input.
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Fig. 3. Outputs of estimated models with observed data for reference input.
ARX,Auto-RegressivewithExogenous input;OE, outputerror; SID,Subspace Identification.
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Aw
jþ1 ¼ diag½0:0566; 0:1107; 0:9993 �: (48)

The estimation of neutron power by projection space model is
shown in Fig. 9, which also compares estimates of power obtained
by other empirical models. It may be seen that the projection space
model suitably predicts the multiscale behavior and gives a better
estimate of neutron power than do the other models. In case of ARX
approach, the model structure estimates a noise model; however,
the parameter of noise model is related to process model and thus

gives a poor estimate. Besides this, the OEmodel structure does not
evaluate a noise model and approximates the noisy plant output as
the output of the model. In SID, system parameters estimate Kal-
man states, which leads to a good response. Different estimated
models are given in Appendix C.

For the purpose of validation of different estimated models,
plant datasets are shown in Figs. 10 and 11. These plant datasets are
comprised of data on changes in reactivity and corresponding
variation in power. Outputs of all estimated models are compared
with observed plant output in Fig.11. It can be seen that single-scale
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Fig. 6. Variation of reference reactivity validation input (Case B).
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Fig. 7. Outputs of estimated models with observed data for Case B input.
ARX, Auto-Regressive with Exogenous input; OE, output error.

Table 2
Estimated wavelet filter coefficients for different states.

State Estimated filters

First h[k] ¼ [0, �0.35327, 0.49097, 0.75035, �1.24226, �1.00652, 0.14061, �0.00122]
g[k] ¼ [0, 0.56456, �0.78461, 0.25390, �0.03415, 0.00029, 0, 0]
~h½k� ¼ [0, 0, �0.00029, �0.03415, �0.25390, �0.78461, �0.56456, 0]
~g½k� ¼ [�0.00122, �0.14061, �1.00652, 1.24226, 0.75035, �0.49097, �0.35327, 0]

Second h[k] ¼ [0, 0.35326, �0.49089, �0.75038, 1.24207, 1.0066, �0.14046, 0.00121]
g[k] ¼ [0, �0.56462, 0.78461, �0.25380, 0.03410, �0.00029, 0, 0]
~h½k� ¼ [0, 0, 0.00029, 0.034106, 0.25380, 0.78461, 0.56462, 0]
~g½k� ¼ [0.00121, 0.14046, 1.00662, �1.24207, �0.75038, 0.49089, 0.35326, 0]

Third h[k] ¼ [0, �0.35324, 0.49081, 0.75041, �1.24187, �1.00671, 0.14030, �0.00120]
g[k] ¼ [0, 0.56468, �0.78460, 0.25369, �0.03405, 0.00029, 0, 0 ]
~h½k� ¼ [0, 0, �0.00029, �0.03405, �0.25369, �0.78460, �0.56468, 0]
~g½k� ¼ [�0.00120, �0.14030, �1.00671, 1.24187, 0.75041, �0.49081, �0.35324, 0]

Fourth h[k] ¼ [0, 0.35322, �0.49073, �0.75044, 1.24167, 1.00681, �0.14014, 0.00119]
g[k] ¼ [0, �0.56474, 0.78460, �0.25357, 0.03400, �0.00029, 0, 0]
~h½k� ¼ [0, 0, 0.00029, 0.03400, 0.25357, 0.78460, 0.56474, 0]
~g½k� ¼ [0.00119, 0.14014, 1.00681, �1.24167, �0.75044, 0.49073, 0.35322, 0]

Fifth h[k] ¼ [0, �0.35320, 0.49065, 0.75047, �1.24146, �1.00691, 0.13998, �0.00118]
g[k] ¼ [0, 0.56480, �0.78459, 0.25345, �0.03395, 0.00028, 0, 0]
~h½k� ¼ [0, 0, �0.00028, �0.03395, �0.25345, �0.78459, �0.56480, 0]
~g½k� ¼ [�0.00118, �0.13998, �1.00691, 1.24146, 0.75047, �0.49065, �0.35320, 0]

Sixth h[k] ¼ [0, 0.35318, �0.49056, �0.75051, 1.24124, 1.00702, �0.13980, 0.00117]
g[k] ¼ [0, �0.56487, 0.78459, �0.25333, 0.03390, �0.00028, 0, 0]
~h½k� ¼ [0, 0, 0.00028, 0.03390, 0.25333, 0.78459, 0.56487, 0]
~g½k� ¼ [0.00117, 0.13980, 1.00702, �1.24124, �0.75051, 0.49056, 0.35318, 0]

Seventh h[k] ¼ [0, �0.35316, 0.49047, 0.75054, �1.24103, �1.00713, 0.13963, �0.00116]
g[k] ¼ [0, 0.56494, �0.78458, 0.25321, �0.03384, 0.00028, 0, 0]
~h½k� ¼ [0, 0, �0.00028, �0.03384, �0.25321, �0.78458, �0.56494, 0]
~g½k� ¼ [�0.00116, �0.13963, �1.00713, 1.24103, 0.75054, �0.49047, �0.35316, 0]
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Fig. 5. Outputs of estimated models with observed data for Case A input.
ARX, Auto-Regressive with Exogenous input; OE, output error.
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techniques are only able to approximate the multiscale process,
whereas the estimated model in projection space efficiently cap-
tures system modes evolving at different scale of time, thus giving
better prediction result than others. Table 5 shows the value of
PMSE for different models for the estimation and validation data-
sets. It may be noted that the projection space approach yields less
PMSE than do other single-scale techniques thereby outperforming
other techniques in estimation and in validation in terms of mean
squared error in the output.

5. Conclusion

One of the major achievements of this work is the formalization
of a wavelet operator to transform states of a multivariable system
from space of temporal measurements to that of projections in
multiresolution, given by the operator. The imposed structure in
projection space is justified as wavelets are approximate Eigen
functions of convolution operators. It is also shown that given an
operator, there exists a definite relationship between the model in
the measurement space and that in the projection space. The
design methodology is demonstrated by designing multirate filter
bank associated with wavelet operators for modeling a nuclear
reactor. A nuclear reactor is an ideal example to establish the
methodology as it exhibits multi-timescale complex behavior.
Furthermore, it is shown that projection space modeling of the
reactor system leads to significant improvement in output predic-
tion over single-scale modeling techniques.
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Appendix A

Vandermonde structure of W j

General structure of the linear transformation W j satisfying

Aw
jþ1W j ¼ W j

~A is computed as follows.

Table 3
PMSE for simulated reference dataset.

Dataset

Model

Projection
space

SID ARX OE

Estimation 2.3806 � 10�5 5.0433 � 10�4 7.9436 � 10�4 3.6788 � 10�4

Validation
(Case A)

4.3000 � 10�3 1.2000 � 10�2 1.2900 � 10�2 1.2500 � 10�2

Validation
(Case B)

2.8000 � 10�3 1.0500 � 10�2 1.2700 � 10�2 1.0000 � 10�2

ARX, Auto-Regressive with Exogenous input; OE, output error; PMSE, percentage
mean squared error.
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Fig. 9. Outputs of estimated models with observed data for plant input.
ARX, Auto-Regressive with Exogenous input; OE, output error.

Table 4
Estimated filter coefficients for different states for simulated plant dataset.

State Estimated filters

First h[k] ¼ [�0.00497, 0.78317, 1.31746, 0.26550, �0.26381, 0]
g[k] ¼ [0, 0, 0.00303, �0.47679, 0.47376, 0]
~h½k� ¼ [0, 0.47376, 0.47679, 0.00303, 0, 0]
~g½k� ¼ [0, 0.26381, 0.26550, �1.31746, 0.78317, 0.00497]

Second h[k] ¼ [0.00477, �0.52473, �0.88623, �0.17917, 0.17754, 0]
g[k] ¼ [0, 0, �0.00645, 0.71031, �0.70385, 0]
~h½k� ¼ [0, �0.70385, �0.71031, �0.00645, 0, 0]
~g½k� ¼ [0, �0.17754, �0.17917, 0.88623, �0.52473, �0.00477 ]

Third h[k] ¼ [�0.02846, 0.49605, 0.89684, 0.19166, �0.18066, 0]
g[k] ¼ [0, 0, 0.04172, �0.72704, 0.68532, 0]
~h½k� ¼ [0, 0.68532, 0.72704, 0.04172, 0, 0]
~g½k� ¼ [0, 0.18066, 0.19166, �0.89684, 0.49605, 0.02846]
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Fig. 10. Variation of plant reactivity validation input.
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Fig. 11. Outputs of estimated models with observed data for plant input.
ARX, Auto-Regressive with Exogenous input; OE, output error.

Table 5
PMSE for simulated plant dataset.

Dataset
Model

Projection space SID ARX OE

Estimation 1.2397 � 10�3 1.3753 � 10�3 3.5821 � 10�3 1.4072 � 10�3

Validation 1.1005 � 10�2 1.2790 � 10�2 1.3936 � 10�2 1.2841 � 10�2

ARX, Auto-Regressive with Exogenous input; OE, output error; PMSE, percentage
mean squared error.
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Let

W j ¼

2
664
v11 v12 / v1N
v21 v22 / v2N
« « 1 «

vN1 vN2 / vNN

3
775: (A.1)

Then,

2
664
a1 0 / 0
0 a2 / 0
« « 1 «
0 0 / aN

3
775
2
664
v11 v12 / v1N
v21 v22 / v2N
« « 1 «

vN1 vN2 / vNN

3
775

¼

2
664
v11 v12 / v1N
v21 v22 / v2N
« « 1 «

vN1 vN2 / vNN

3
775

2
66664

0 0 / �aN
1 0 / �aN�1
0 1 / �aN�2
« « 1 «
0 0 / �a1

3
77775 (A.2)

implies

aivi1 ¼ vi2;
aivi2 ¼ vi3;

«
aiviðN�1Þ ¼ viN;

aiviN ¼ �aNvi1 � aN�1vi2/� a1viN;ci ¼ 1;2;…;N:

(A.3)

Because ai, i ¼ 1, 2, …, N are the eigenvalues of A
v
j , one can write

viN ¼ aiv1ðN�1Þ ¼ a2i viðN�2Þ ¼ / ¼ a
ðN�1Þ
i vi1;

viðN�1Þ ¼ aiv1ðN�2Þ ¼ a2i viðN�3Þ ¼ / ¼ a
ðN�2Þ
i vi1;

«
vi2 ¼ aivi1;

ci ¼ 1; 2;…;N:

(A.4)

One can assume vi1 ¼mi,c i ¼ 1, 2,…, N to get the Vandermonde
structure of W j as given in (30).

Appendix B

An analytical example of PRBWFB design

Consider that the analysis HPF coefficients g are known to us as

g ¼ ½ g1 g2 g3 g4 �: (B.1)

Using perfect reconstruction condition, synthesis LPF co-

efficients ~h are given by

~h ¼ ½�g4 g3 �g2 g1 �: (B.2)

Let the analysis LPF h, to be computed, is given by

h ¼ ½ h1 h2 h3 h4 �: (B.3)

Applying the biorthogonality condition between h and g,

�h1g4 þ h2g3 � h3g2 þ h4g1 ¼ 1;
�h1g2 þ h2g1 ¼ 0;
�h3g4 þ h4g4 ¼ 0:

(B.4)

To design the filter bank with one vanishing moment constrain,
the vanishing moment condition is given by

�h1 þ h2 � h3 þ h4 ¼ 0: (B.5)

The system of Equations (B.4) and (B.5) give coefficients of
analysis LPF h, and further synthesis HPF ~g is designed.

~g ¼ ½ h4 �h3 h2 �h1 �: (B.6)

Similarly, the design can be extended for desired number of
vanishing moments after increasing length of filter by appending
zeros to it.

Appendix C

Basic Model Structures

The general parametric discrete-time model structure is given
by [29].

y½k� ¼ B
�
q�1	

A
�
q�1

	u½k� þ C
�
q�1	

D
�
q�1

	 e½k�; (C.1)

where q�1 is backward shift operator such that q�1u½k� ¼ u½k� 1�.
The polynomials are defined as

B
�
q�1

�
¼ b1q

�1 þ b2q
�2 þ/þ bnbq

�nb ;

A
�
q�1

�
¼ 1þ a1q

�1 þ a2q
�2 þ/þ anaq

�na ;

C
�
q�1

�
¼ 1þ c1q

�1 þ c2q
�2 þ/þ cncq

�nc ;

D
�
q�1

�
¼ 1þ d1q

�1 þ d2q
�2 þ/þ dndq

�nd :

(C.2)

The OE model structure is defined by choosing
Dðq�1Þ ¼ Cðq�1Þ ¼ 1 in (C.1). It is given by

y½k� ¼ B
�
q�1	

A
�
q�1

	u½k� þ e½k�: (C.3)

The parameters of estimated OE model from reference dataset
are given by

B
�
q�1

�
¼ 186:9q�1 � 370:9q�2 þ 184q�3;

A
�
q�1

�
¼ 1� 1:994q�1 þ 0:994q�2:

(C.4)

The ARX model structure is defined by choosing C(q�1)¼1 and
D(q�1)¼A(q�1) in (C.1). It is given by

y½k� ¼ 1
A
�
q�1

	 �B�q�1
�
u½k� þ e½k�

�
: (C.5)

The parameters of estimated ARX model from reference dataset
are given by

B
�
q�1

�
¼ 61:47q�1 � 121q�2 þ 59:58q�3;

A
�
q�1

�
¼ 1� 2:582q�1 þ 2:168q�2 � 0:586q�3;

(C.6)

and the estimated SID model from reference data is given by

x½kþ 1� ¼

2
64

1 0 0
�0:001 0:891 �0:120
�0:004 �0:238 0:693

3
75x½k� þ

2
64

1:5
28082
68668

3
75u½k�

þ

2
64
0:022
�997
2860

3
75e½k�;

y½k� ¼ ½53:69 �0:0007 0 �x½k� þ e½k�:
(C.7)

On the other hand, estimated models from plant dataset are as
follows:The OE model is given by
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B
�
q�1

�
¼ �3:83q�1 þ 31:55q�2 � 28:27q�3;

A
�
q�1

�
¼ 1� 1:042q�1 � 0:841q�2 þ 0:883q�3:

(C.8)

The ARX model is given by

B
�
q�1

�
¼� 15:63q�1 þ 42:93q�2 � 25:92q�3 � 41:9q�4

þ 66:34q�5 � 25:92q�6;

A
�
q�1

�
¼ 1� 2:867q�1 þ 2:789q�2 � 0:975q�3 þ 0:0541q�4;

(C.9)

and the SID model is given by

x½kþ 1� ¼

2
64
0:999 �0:003 0:004
0:083 0:454 0:272
0:122 �0:828 �0:509

3
75x½k� þ

2
64
19:035
2364:8
94:335

3
75u½k�

þ

2
64
0:125
2:266
0:152

3
75e½k�;

y½k� ¼ ½7:703 �0:001 0:003 �x½k� þ e½k�:
(C.10)
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