• Title/Summary/Keyword: Waveguides

Search Result 430, Processing Time 0.025 seconds

Calculation of Radiation Patterns of Planar Array Antennas of Rectangular Waveguides Loaded by Dielectric Plug and Sheath (유전체 마개와 덮개가 부착된 구형 도파관의 평면 배열 안테나의 복사패턴 계산)

  • 김세윤;하헌태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.8-14
    • /
    • 1992
  • The radiation pattern of a rectangular-grid array antenna consisted of rectangular waveguides is represented by multiplication of its element and array factors. Calculated radiation patterns for excitation of TES110T mode inside the waveguides suffer from the blindness at a particular direction on E-plane. Numerical simulations show that the blindness can be removed by inserting dielectric plug inside the waveguides or covering dielectric sheath in front of the waveguides.

  • PDF

Fabrication and Characterization of Sol-Gel Ternary Titanium Silicate Waveguides

  • Junmo Koo;Han, Sang-Soo;Bae, Byeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.89-94
    • /
    • 1996
  • Aluminum and zinc titanium silicate sol-gel films were fabricated for application of waveguide and the effect of additions of ZnO and $Al_2O_3$ to binary titanium silicate films was investigated. During firing, the films are densified as they shrunk and their refractive index increases in the range of 1.58-1.83 depending on the film composition. The attenuation of the waveguides is not sensitive to changes in composition except for zinc titanium silicate waveguides which have substantially higher attenuation. However, the increase in the attenuation with aging of the waveguides depend upon the composition of waveuides. The addition $Al_2O_3$ or the reduced $SiO_2$ content in the composition appears to slow the deterioration of the waveguides due to the formation of more stable bonds and increased acidity on the film surface. Also, the wavelength dependence of the attenuation of the waveguides varies with composition. The attenuation of the waveguides except for the $65SiO_2{\cdot}35TiO_2$ composition are not Rayleigh scatter limited, suggesting the absorption loss of the waveguides due to the effects of residual carbon and structural defects in the films.

  • PDF

Low-Loss Polymeric Waveguides Having Large Cores Fabricated by Hot Embossing and Micro-contact Printing Techniques

  • Yoon, Keun Byoung
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.474-477
    • /
    • 2004
  • We present simple, low-cost methods for the fabrication of polymeric waveguides that have large core sizes for use as optical interconnects. We have used both hot embossing and micro-contact printing techniques for the fabrication of multimode waveguides using the same materials. Rectangular and large-core (60${\times}$60 $\mu\textrm{m}$$^2$) channels were readily prepared when using these methods. The dimensions of the embossed and printed channels were the same as those of the pattern on the original master. The polymeric waveguides that we fabricated with large core sizes exhibited a low propagation loss of 0.1 dB/cm at 850 nm, which indicates that hot embossing and micro-contact printing are suitable techniques for the fabrication of optical waveguides having large-core.

Low-Loss Multimode Waveguides Using Organic-Inorganic Hybrid Materials

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.290-292
    • /
    • 2004
  • Multimode channel waveguides were fabricated using a direct UV patterning technology from thick films deposited by the one-step dip-coating of an organic/inorganic hybrid material (ORMOCER(equation omitted). The core size of the covered ridge waveguide was 43${\times}$51 $\mu\textrm{m}$$^2$; the waveguides can be readily prepared for multimode applications by direct UV patterning. The waveguides exhibited smooth surface profiles and a low optical loss of 0.07 ㏈/cm at the most important wavelength (850nm) used for optical interconnects.

Long-Range Surface-Plasmons Excited on Double-Layered Metal Waveguides (이중-금속 장거리 표면-플라즈몬 도파로)

  • Joo, Yang-Hyun;Jung, Myong-Jin;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • We propose a novel metal-waveguide structure for sustaining long-range surface-plasmon-polaritons (LRSPP). The LRSPP waveguides are composed basically of two asymmetric metal layers: a very thin, finite-width metal strip on top of a metal slab with a dielectric gap in between them. Mode cut-off of LRSPPs excited on the double-metal waveguides is characterized by consistently investigating their dispersion relations and mode profiles. We also confirm experimentally the existence of low-loss, well-confined LRSPP modes by measuring far-field outputs emerging from an edge of the asymmetric double-metal waveguides. In the experiment, we have fabricated several types of SPP waveguide devices including straight lines, S-bend, and Y-branch consisting of gold strips (20 nm-thick, $5{\mu}m$-wide). Overall propagation loss of the proposed double-metal waveguides is quite comparable to that of single metal-strip waveguides, in addition the mode sizes can be tuned by increasing the core-insulator gap between the metal layers to get a higher coupling efficiency with a single-mode fiber in telecom wavelength. The proposed LRSPP waveguides may open up realization of SPP-waveguide sensors or nonlinear SPP-devices by replacing the core-insulator with a bio-fluid or a nonlinear medium.

Evaluation of Chromatic-Dispersion-Dependent Four-Wave-Mixing Efficiency in Hydrogenated Amorphous Silicon Waveguides

  • Kim, Dong Wook;Jeong, Heung Sun;Jeon, Sang Chul;Park, Sang Hyun;Yoo, Dong Eun;Kim, Ki Nam;An, Shin Mo;Lee, El-Hang;Kim, Kyong Hon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.433-440
    • /
    • 2013
  • We present an experimental and numerical study of spectral profiles of effective group indices of hydrogenated amorphous silicon (a-Si:H) waveguides and of their chromatic-dispersion effect on the four-wave-mixing (FWM) signal generation. The a-Si:H waveguides of 220-nm thickness and three different widths of 400, 450 and 500 nm were fabricated by using the conventional CMOS device processes on a $2-{\mu}m$ thick $SiO_2$ bottom layer deposited on 8-inch Si wafers. Mach-Zehnder interferometers (MZIs) were formed with the a-Si:H waveguides, and used for precise measurement of the effective group indices and thus for determination of the spectral profile of the waveguides' chromatic dispersion. The wavelength ranges for the FWM-signal generation were about 45, 75 and 55 nm for the 400-, 450- and 500-nm-wide waveguides, respectively, at the pump wavelength of 1532 nm. A widest wavelength range for the efficient FWM process was observed with the 450-nm-wide waveguide having a zero-dispersion near the pump wavelength.

Mode Propagation in X-Ray Waveguides

  • Choi, J.;Jung, J.;Kwon, T.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.

A Study on the Optimal Antireflection coating on the facets of buried channel waveguides (매립형 채널 도파로(buried channel waveguides) 소자 단면의 최적 무반사 코팅에 관한 연구)

  • 김형주;김상택;김부균
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.317-320
    • /
    • 2000
  • We have calculated the optimum refractive index and thickness for a single layer antireflection coating as a function of active layer width and thickness in buried channel waveguides. The results using the variational method to obtain the field profiles are compared to those using the effective index method.

  • PDF

Analysis of planar optical waveguides using incident angle of complex number (복소수 입사각을 이용한 평판 광도파로 해석)

  • 임영준;김창민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.149-154
    • /
    • 1996
  • We propose the concept of incident angle of complex number and analyze planar optical waveguides by applying the concept. The incident angle of complex number is concerned with the modeling of prism-gap-waveguide structures. It is shown that, when optical waveguides are analyzed by use of the transfer matrix method, the proposed concept enable us to find solutions faster and more accurately than ghatak's method which introduces the leaky structure.

  • PDF

Low-Cost Fabrication of Multimode Optical Waveguides for Optical Interconnects (광 연결을 위한 저가형 멀티모드 광 도파로의 제작)

  • 이병탁;권민석;윤준보;신상영
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.315-318
    • /
    • 1999
  • As low-cost optical waveguides of optical interconnects, we fabricate multimode optical waveguides using a molding process The core size of a optical waveguide is 47 ${\mu}{\textrm}{m}$ $\times$ 41 ${\mu}{\textrm}{m}$. We use the photoresist AZ9260 as a master, polydimethyl-siloxane (PDMS) as a mold. In transferring process to polymeric material, we employ a modified micro-transfer molding process. All processes are simple and low-cost.

  • PDF