• Title/Summary/Keyword: Waveguide-to-CPW

Search Result 156, Processing Time 0.028 seconds

Design and Implementation of CPW-Fed UWB Monopole Antenna (CPW 급전 방식을 이용한 UWB 모노폴 안테나 설계 및 구현)

  • Yu, Ju-Bong;Jeon, Jun-Ho;An, Chan-Kyu;Kim, Woo-Chan;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • In this paper, a novel CPW(Coplanar Waveguide)-fed UWB(Ultra Wide Band) antenna is designed, implemented, and measured for UWB communications. CPW-fed planar antenna has advantages of wide-bandwidth, low-cost and easy interaction with radio frequency front end circuitry. We have used HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for implementation. The proposed antenna showed VSWR(Voltage Standarding Wave Ratio)${\leq}2$ for the frequency band from 3.1 GHz to 10.6 GHz which is used for ultra wide band communication. Measured peak gains are 2.61, 4.95, 2.89, 7.35 dBi at 3, 6, 8, 11 GHz, respectively.

A Technique for Broadbanding the CPW-Fed Bow-Tie Slot Antenna

  • Kim Sung-Hak;Wen Lijun;Ko Han-Woong;park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a technique is presented for broadbanding the bow-tie slot antenna fed by a CPW(coplanar waveguide). The bandwidth performance of existing bow-tie slot designs is greatly enhanced by optimizing the slot shape and properly adjusting the characteristic impedance of the coplanar waveguide feeding the slot. To connect the 50-ohm input coaxial line to the CPW feed line, a linear taper in the CPW is employed. The designed antenna shows a 3.5 $\~$ 10.0 GHz impedance bandwidth, a 3.5 $\~$ 6.0 GHz pattern bandwidth, and a 5.5 $\~$ 7.5 dBi gain over 3.5 $\~$ 6.0 GHz. Above 6.0 GHz, the antenna radiation pattern appreciably deviates from the typical dipolar pattern.

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Electric Fuel Sender Apparatus for the Vehicles Using CPW Transmission Line (CPW 전송선을 이용한 전자식 자동차용 연료 센더 장치)

  • Son Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.380-386
    • /
    • 2006
  • Electric fuel sender fur the vehicle fuel gauge system was designed and fabricated based on the CPW(Co-Planer Waveguide) transmission line theory. It is applied on this system that characteristic impedance of RF transmission line can be varied by the surrounded material of the line. By the characteristic impedance owing the level of gasoline or diesel fuel in vehicle fuel tank, CPW line has corresponding reflected signal as much as changed impedance. Detected signal is amplified, and delivered to fuel indicator into cluster unit on dash board. Conventional floating mechanical buoy level gauge has several defects as low reliability and high break down rate by mechanical operation, and has not good linearity for the fuel level difference. CPW line with electric circuits are constructed on 1.6 mm thickness epoxy substrate, and measurement shows that this system has more accurate level and better linearity than conventional mechanical system. New electric fuel sender which has good productivity with long lifetime and low-in-cost by the SMT chip assembling could be replaced this system with conventional floating buoy system.

Design of CPW fed antenna using high dielectric constant materials (고유전율 유전체를 이용한 CPW 급전 안테나의 설계)

  • 심성훈;강종윤;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.559-562
    • /
    • 2000
  • In this paper, coplanar waveguide fed antennas (CPWFAs) insetting two slits to boundary of the square microstrip patch are presented. These slits play roles in not only lowering a resonant frequency but also fine-tuning for the proposed antenna together with open stub of CPW feed line. The CPWFAs were designed and manufactured using microwave dielectrics (Al,Mg)TaO$_2$ having high dielectric-constant ($\varepsilon$r=20). The return loss and input impedance of the CPWFAs were investigated in terms of the slit length and open stub length of CPW feed line. It is shown that a resonant frequency decreases as the slit length increases.

  • PDF

Design and Implementation of VCO for Doppler Radar System (도플러 레이더 시스템용 VCO 설계 및 제작)

  • Kim Yong-Hwan;Kim Hyun-Jin;Min Jun-Ki;Yoo Hyung-Soo;Lee Hyung-Kyu;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.81-87
    • /
    • 2005
  • In this paper, a VCDRO(Voltage Control Dielectirc Resonator Oscillator) for signal source of doppler radar system is designed and fabricated. The proposed VCDRO is made with new tuning mechanism using CPW line. The coplanar waveguide of $\lambda_{g}$/2 in length with varactor diode is placed on the metallization side under the dielectric resonator and coupled to it. Tuning varactor diode is mounted at one end of the CPW. The proposed circuit tuned by a CPW allows one more varactor diode to be mounted on the optimized CPW, where a greater sensitivity of frequency tuning is needed. With varying the biasing voltage for the varactor diode from 0 V to 15 V, output frequency tuning of 12 MHz is obtained. The PLDRO exhibits output power of 16.5 dBm with phase noise in the phase locked state characteristic of -115 dBc/Hz at 100 Hz, -105 dBc/Hz at the 10 kHz, and -102 dBc/Hz at 1 Hz offset from 10.525 GHz , respectively.

  • PDF

A Size-Reduced CPW Balun with the Wilkinson Divider Structure Using a Crossing Structure (신호-접지 교차구조를 이용한 소형화된 CPW 월킨슨 분배기 구조의 발룬)

  • Lim Jong-Sik;Yang Hoe-Sung;Kim Dong-Joo;Jeong Yong-Chae;Ahn Dal;Kim Kwang-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.835-841
    • /
    • 2005
  • In this paper, a novel sized-reduced CPW(Coplanar Waveguide) balun is proposed. It has a crossing structure between signal line and ground planes of CPW transmission line for the $180^{\circ}$ phase inversion. The$3{\lambda}/4$ CPW transmission line is reduced to ${\lambda}/4$ in physical length while the electrical length is preserved to $270^{\circ}$ by the $180^{\circ}$ phase inverting structure, while the previous balun by Lim et at. has a long $3{\lambda}/4$ transmission section to from the Wilkinson divider structure having out of phase between output ports. In addition, the measured data which show the crossing structure has the wanted $180^{\circ}$ phase change is presented in this work.

Optimum Design of EHF CPW using FDTD (시간영역유한차분법을 이용한 극초고주파용 CPW의 최적화 설계)

  • Jang, In-Bum;Lee, Joon-ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1129-1132
    • /
    • 2005
  • The purpose of this reserch is to establish the new design technology for microwave Coplanar structure. The components in microwave circuit are classified to transmission devices, EM devices, and quasi-TEM devices. After design of these devices, we analyzed these CPWs electromagnetically using FDTD method, and suggested optimum CPW structure. In oder to realize a CPW module up to 30 GHz-100 GHz band, we research on a technology of 3-dimensional microwave CPW, and GaAs substrate with Si layer for ohmic loss. As a result this research, we suppressed the leakage, resonance, coupling, and radiation of CPW EMI, and improved resonance quality of CPW.

Low-Loss Broadband Planar Balun with CPW-to-Slotline Transition for UHF Applications

  • Hong, Young-Pyo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.146-151
    • /
    • 2009
  • This paper presents a low-loss broadband balun that uses a coplanar waveguide-to-slotline field transformation. It operates over a very wide frequency range and is of compact size since it does not depend on a resonant structure. To analyse imbalance, the coplanar wavelength(CPW) input ground is connected to the CPW output ground through various capacitors to introduce common-mode impedances. As the common-mode impedance increased the imbalance became significantly higher at the higher-frequency band compared with the lower-frequency band. The bias-circuit approach is used to improve the operation bandwidth of the lower-frequency band. The measured results show a passband of 200 MHz to 2 GHz, an insertion loss of less than 0.75 dB, and a size of $20{\times}14\;mm$. The amplitude imbalance is approximately 0.3 dB and the phase imbalance is less than $6^{\circ}$ over the entire operational range.

A Novel Stepped-Patch Loaded CPW and Its Application to a Low-Pass Filter

  • Park, Jong-Kuk;Na, Hyung-Gi;Lim, Jong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.117-120
    • /
    • 2010
  • A novel stepped-patch loaded coplanar waveguide(SPLCPW) structure is proposed and applied to the design of a low-pass filter(LPF). The stepped-patch loaded on the opposite side of the CPW plane is shown to provide a shunt-connected series L-C resonance, which is dual to that of a conventional CPW defected ground structure(DGS). As a simple example of the proposed SPLCPW circuit, a 3-pole SPLCPW LPF is designed and good results are obtained.