• Title/Summary/Keyword: Waveguide array

Search Result 162, Processing Time 0.025 seconds

Analysis and Design of the Spirally Slotted Array Antenna (나선형 슬랏배열 안테나의 특성해석 및 설계)

  • 민이규;양두영;이상설
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.799-805
    • /
    • 1991
  • In this paper, the analysis and design of a spirally slotted array antenna with high efficiency are presented. Electric fields in the slots are calculated by electromagnetic fields in the upper waveguide and radiation field equations are derived. Slots are arrayed spirally on the upper circular plate of twofold radial waveguide. In order to suppress grating lobes from the array, a slow wave structure is inserted in the upper waveguide. This antenna is characterized by a good circular polarization, high efficiency of 75 percent and grating lobes below -34dB.

  • PDF

X-ray Diffraction from X-ray Waveguide Arrays for Generation of Coherent X-ray

  • Park, Yong-Sung;Choi, Jae-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.333-336
    • /
    • 2010
  • The generation of coherent x-ray beams by using a multi-slit diffraction phenomenon is presented. The mode-confinement conditions in the x-ray waveguide (XWG) needed to obtain single-mode beams are determined. The XWGs are stacked to form an XWG array. The core of the XWG array is used as a slit in an opaque screen, similar to those used for visible light. Diffraction patterns that interfered constructively in the XWG array are investigated based on multi-slit diffraction theory. The irradiance distributions are studied at on observation screen. The FWHM of diffracted x-ray spectra were between $1.67{\times}10^{-4}$ to $3.30{\times}10^{-5}$ radians which lead to a spot-size of a few tens of micrometers on the screen at distance of 1 m. The intensities decrease with increase in the period of the XWG array, i.e. a thicker cladding, due to growth of the higher-order diffraction peaks.

A Study on the Array Antenna for Satellite Broadcasting Receiver (위성방송 수신용 배열안테나에 관한 연구)

  • 신용주;강기조;이학용;김종규;김종헌;이종철;김남영;박면주;이병제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.787-795
    • /
    • 2003
  • Three types of array antennas are developed for broadcasting band of Koreasat III. First, the specification of the array antenna is decided. Second, characteristics and advantages of three types of antennas using the radial waveguide characteristics is investigated and discussed. Third, design method fur those antenna is studied to meet antenna specifications, and then antennas are designed and tested. Finally, it is concluded that these types of antennas can be efficiently design compared to both parabola antennas and microstrip array within the limited size.

Extraction of S-Parameters for a Slot Unit on the Post-Wall Waveguide from Measured Data

  • Lee, Jae-Ho;Park, Jung-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.122-127
    • /
    • 2012
  • Post-wall waveguide structures have attracted a great deal of attention for micro- and millimeter-wave applications. One of the waveguide’s applications is a slotted waveguide array. In order to design the slotted array, the characteristics of a slot unit alone on the post-wall waveguide should be investigated. In this paper, a method for extracting the S-parameters of a unit slot is proposed. This simple method requires only two kinds of waveguides: waveguides without a slot unit and waveguides with a slot unit. Three kinds of slot units are fabricated, and the extracted results show a high level of agreement with predicted (simulated) results. With this method, the equivalent slot length can also be found.

Design of an Equivalent Antenna Model for Array Antennas Using Open-Ended Waveguide (열린 도파관을 이용한 배열안테나의 전자파 해석 등가 모델링 기법)

  • Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.525-532
    • /
    • 2015
  • In this paper, we propose an equivalent model of array antennas that use open-ended waveguides for effective EM simulation. We first investigate an individual element that consists of an open-ended waveguide and square ground plane. The waveguide length, aperture size, and ground size of the individual element are adjusted to give a similar radiation pattern to that of the individual element of the original antenna. We then apply the designed equivalent model to two different types of array antennas, such as a microstrip patch array and a waveguide array antenna. Comparison of the simulation results using the equivalent model with the results obtained with the original antenna reveals a difference in gain of less than 0.2 dB and a difference in half power beam width(HPBW) of less than $1^{\circ}$. The designed equivalent model is then mounted on a simple aircraft, and the simulation results are again compared to results from the original antenna. We find a 60 % reduction in simulation resources and time when compared with the original antenna model.

Array Antenna Design for Ku-Band Terminal of L.E.O Satellite Communication

  • Kang, Seo;Kang, JeongJin;Rothwell, Edward J.
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.41-46
    • /
    • 2022
  • This study is a Ku-band array antenna for the manufacture of low-orbit satellite communication terminals, designed to have miniaturization, high gain, and wide beam width. The transmission of low-orbit satellite communication has a right-rotating circularly polarized wave, and the reception has a left-rotating circularly polarized wave. The 4×8 array antenna was separated for transmission and reception, and it was combined with the RF circuit part of the transmitter and receiver, and was terminated in the form of a waveguide for RF signal impedance matching in the form of a transition from the microstrip line to the waveguide. The 30° beam width of the receiver maximum gain of 19 dBi and the 29° beam width of the transmitter maximum gain of 18 dBi are shown. Through this antenna configuration, the system was configured to suit the low-orbit satellite transmission/reception characteristics.

Optimal Design of Arrayed Waveguide Grating

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.99-103
    • /
    • 2004
  • This paper describes the optimal design of an AWG spectrum to meet various specifications and improve some physical parameters. The objective function is the norm of the difference between design parameters and target values. To obtain the design parameters, the Fourier model is employed and the design variables arc spacing of array waveguide, width of array waveguide, optical path difference, and focal length. The (1+1) Evolution Strategy is employed as the optimization tool. The optimization procedure is applied to a 16-channel AWG and the optimized design variables will considerably improve the system performance.

Design of Optimized Two Baseline Waveguide Slot Array Antenna for Interferometric Radar Altimeter (기저선이 최적화된 간섭계 레이다 고도계용 도파관 슬롯 배열 안테나 설계)

  • Yoon, Nanae;Kim, Jihyung;Kim, Jinsu;Jang, Jonghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In this paper, the compact waveguide slot array antenna for interferometric radar altimeter is proposed. The proposed antenna structure consist of corrugation structure which is applied between each channel to improve isolation, three-channel waveguide slot array antenna and feeder. In addition, to reduce the occurrence of phase ambiguity, the baseline spacing of the three-channel antenna is analyzed and the results are applied to the design. For compact design, reduced height and SMP connector structure are used and the dip brazing method which is the conjugation method after dipping to flux is used for the fabrication of the lightweight antenna. The measurement result of the proposed antenna shows less than 1.41 : 1 (VSWR) and 48.3 dBc (isolation). The antenna gain is higher than 20.2 dBi and the side lobe levels are lower than 18.8 dB (vertical plane) and 10.0 dB (horizontal plane).

Analysis and Design of Waveguide Slotted Array Antenna using Method of Moment. (모멘트법을 적용한 구형도파관 슬롯 배열 안테나 해석 및 설계)

  • Choe, Seong-Yeol;Go, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.375-381
    • /
    • 2002
  • A rigorous analysis of a broad wall slot array is presented. The slot is longitudinal and offset from the center line in the rectangular waveguide. Pertinent integral equations are developed, taking into account finite wall thickness. The mothed of moment with entire basis function is used to solve a pair of coupled-integral equations, derived from the electromagnetic boundary conditions using modified Green's function, to find the tangential electric field on the upper and lower surfaces of the slot. Numerical results for resonant length and scattering parameters of the slots are Presented over a range of offset. Computed results are compared with experimental result.

Spatially Combined V-Band MMIC Coupled Oscillator Array in Waveguide (도파관 내에서 공간적으로 결합된 V-Band MMIC 결합 발진기 Array)

  • 최우열;김홍득;강경태;임정화;권영우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2002
  • In this paper, V-band MMIC coupled oscillator arrays are presented. In the proposed array, two push-pull patch antennas are synchronized by using strong electromagnetic coupling between two antennas. As a result, total size of the array is reduced and the array can be integrated in a single chip. To verify proposed array concept, two 1$\times$2 arrays are designed and fabricated using standard 0.15 um gate length pHEMT MMIC process. The circuits are mounted in an oversized waveguide and measured. The first array shows 0.5 dBm at 56.372 GHz and the second one has an output of 5.85 dBm at 60.147 GHz.