DOI QR코드

DOI QR Code

X-ray Diffraction from X-ray Waveguide Arrays for Generation of Coherent X-ray

  • Received : 2010.05.17
  • Accepted : 2010.09.20
  • Published : 2010.12.25

Abstract

The generation of coherent x-ray beams by using a multi-slit diffraction phenomenon is presented. The mode-confinement conditions in the x-ray waveguide (XWG) needed to obtain single-mode beams are determined. The XWGs are stacked to form an XWG array. The core of the XWG array is used as a slit in an opaque screen, similar to those used for visible light. Diffraction patterns that interfered constructively in the XWG array are investigated based on multi-slit diffraction theory. The irradiance distributions are studied at on observation screen. The FWHM of diffracted x-ray spectra were between $1.67{\times}10^{-4}$ to $3.30{\times}10^{-5}$ radians which lead to a spot-size of a few tens of micrometers on the screen at distance of 1 m. The intensities decrease with increase in the period of the XWG array, i.e. a thicker cladding, due to growth of the higher-order diffraction peaks.

Keywords

References

  1. I. A. Vartanyants, I. K. Robinson, J. D. Onken, M. A. Pfeifer, G. J. Williams, F. Pfeiffer, H. Metzger, Z. Zhong, and G. Bauer, “Coherent x-ray diffraction from quantum dots,” Phys. Rev. B 71, 245302-1-245302-9 (2005). https://doi.org/10.1103/PhysRevB.71.245302
  2. J. Miao, Y. Nishino, Y. Kohmura, B. Johnson, C. Song, S. H. Risbud, and T. Ishikawa, “Quantitative image reconstruction of GaN quantum dotsfrom oversampled diffraction intensities alone,” Phys. Rev. Lett. 95, 085503-1-085503-4 (2005). https://doi.org/10.1103/PhysRevLett.95.085503
  3. S. Marchesini, H. N. Chapman, S. P. Hau-Riege, R. A. London, and A. Szoke, “Coherent x-ray diffraction image: applications and limitations,” Opt. Express 11, 2344-2353 (2003). https://doi.org/10.1364/OE.11.002344
  4. C. Fuhse, C. Ollinger, and T. Salditt, “Waveguide-based off-axis holography with hard x-rays,” Phys. Rev. Lett. 97, 254801-1-254801-4 (2006). https://doi.org/10.1103/PhysRevLett.97.254801
  5. G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele, D. Paterson, and M. D. de Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97, 025506-1-025506-4 (2006). https://doi.org/10.1103/PhysRevLett.97.025506
  6. W. Jark, A. Cedola, S. D. Forzo, M. Fiordelisi, S. Lagomarsino, N. V. Kovalenko, and V. A. Chernov, “High Gsin beam compression in new-generation thin-film x-ray waveguides,” Appl. Phys. Lett. 78, 1192-1194 (2001). https://doi.org/10.1063/1.1350956
  7. J. H. H. Bongaerts, M. J. Zwanenbury, F. Zontone, and J. F. van der Veen, “Propagation of coherent x-rays in a multistep-index x-ray waveguide,” J. Appl. Phys. 90, 94-100 (2001). https://doi.org/10.1063/1.1376418
  8. C. Bergermann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91, 204801-1-204801-4 (2003). https://doi.org/10.1103/PhysRevLett.91.204801
  9. P. M. Blancherd, A. H. Greenaway, A. R. Harvey, and K. Webster, “Coherent optical beam forming with passive millimeter-wave arrays,” IEEE J. Lightwave Technol. 17, 418-425 (1999). https://doi.org/10.1109/50.749381
  10. Center for X-ray Optics Web Site: www-cxro.lbl.gov/.
  11. J. Choi, J. Jung, and T. Kwon, “Mode propagation in x-ray waveguides,” J. Opt. Soc. Korea 12, 112-117 (2008). https://doi.org/10.3807/JOSK.2008.12.2.112
  12. L. I. Ognev, “X-ray diffraction effects in a submicron slits and channel,” X-ray Spectrom. 31, 274-277 (2002). https://doi.org/10.1002/xrs.594
  13. C. Ollinger, C. Fufse, A. Jarre, and T. Salditt, “Two-dimensional x-ray waveguides on a grating,” Physica B 357, 53-56 (2005). https://doi.org/10.1016/j.physb.2004.11.018