• Title/Summary/Keyword: Waveguide Directional Coupler

Search Result 69, Processing Time 0.025 seconds

Design of Miniaturized Directional Coupler Utilizing Lumped Element (집중소자를 이용한 소형화된 방향성 결합기 설계)

  • Yong, Kwang-Seong;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, a miniaturized directional coupler utilizing lumped element is proposed as a interdigital capacitor. The traditional miniaturization technique of transmission line realized a utilizing MIM(Metal-Insulator-Metal) capacitor on CPW(Coplanar Waveguide). However, we present a simplified design procedure without additional manufacturing process utilizing interdigital capacitor on microstrip with ease of design. The similar characteristics between the conventional directional coupler with ${\lambda}/4$ transmission line and the miniaturized directional coupler with ${\lambda}/8$ transmission line are validated through simulation and measurement results. Miniaturization rate of total size is about 25% while coupled line is about 60%. As a result, this proposed directional coupler can reduce the size of mobile communication system at 2 GHz.

  • PDF

A Very Short Vertical Directional Coupler Switch with Polarization Independent Very High Extinction Ratios (편광에 관계없이 매우 높은 소멸비와 짧은 길이를 가지는 수직 방향성 결합기 스위치)

  • Jung Byung-Min;Kim Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.503-510
    • /
    • 2004
  • We propose a novel vertical directional coupler switch using a vertical directional coupler with polarization independent coupling lengths employing the doublesided deep-ridge waveguide structure. This switch is composed of a switching operation induced section with symmetric structures and an extinction ratio enhanced section with asymmetric structures. We present design methods and examples for this switch with very short lengths and very high extinction ratios larger than 30 dB for both TE and TM modes in cases of both cross and bar states.

A Study on the Characteristics of Monolithic Laser-Waveguide Coupler by BPM (BPM에 의한 Monolithic Laser-Waveguide Coupler의 특성 연구)

  • 장지호;최태일;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.100-110
    • /
    • 1994
  • In this paper, we present a new analysis of monolithic laser-waveguide coupling structure employing the beam propagation method. Monolithic laser-waveguide coupler has both passive and active components It has too many parameters to consider for an analysis. So we present proper model of coupler by use of directional coupler. We employ the beam propagation method th analyze the proposed structure, we could employ the coupled mode theory but we thought in the case of this paper the beam propagation method is more appropriate than coupler mode theorybecause a number of variables which to consider is too many for the coupled mode theory. Also we use finite difference method to calcurate trial field which is a starting point of beam propagation analysis. Through this approach, we can consider more parameters. And we propose a new structure of monolothic laser-waveguide coupler which has taper structure between the distance in which coupling is taking place and passive waveguide. We can obtain 79% high coupling efficiency from our structure.

  • PDF

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations

  • Han, Young-Tak;Shin, Jung-Uk;Kim, Duk-Jun;Park, Sang-Ho;Park, Yoon-Jung;Sung, Hee-Kyung
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.535-537
    • /
    • 2003
  • We propose a rigorous 2D approximation technique for the 3D waveguide structures; it can minimize the well-known approximation errors of the commonly used effective index method. The main concept of the proposed technique is to compensate for the effective cladding index in the equivalent slab model of the original channel waveguide from the modal effective index calculated by the nonuniform 2D finite difference method. With simulations, we used the proposed technique to calculate the coupling characteristics of a directional coupler by the 2D beam propagation method, and the results were almost exactly the same as the results calculated by the 3D beam propagation method.

  • PDF

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

Thermo-Optically Tunable Filter Using Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Polymer Planar Waveguide (측면 연마된 편광유지 광섬유와 폴리머 평면도파로 사이의 소산장 결합을 이용한 열 광학 가변 필터)

  • 윤대성;김광택
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • We have demonstrated a tunable Inter based on an asymmetric directional coupler made of a side-polished polarization maintaining fiber coupled with a polymer planar waveguide. The thermo-optic effects of the polymer planar waveguide induced by a micro-strip heater placed on the top layer of the device leads to shift of resonance wavelength of the coupler. The fabricated device exhibited wide tunable range exceeding 230 nm with 720 ㎽ of applied electrical power.

Narrowband tunable wavelength filters with asymmetrical directional coupler structure (방향성 결합기 구조의 파장가변 협대역 파장여과기)

  • 한상국
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 1997
  • Wavelength tunable, narrowbandwidth wvelength filters in compound semiconductor have been modeled, fabricated, and characterized. In order to obtain a narrow bandpass characteristics at 1.55.$\mu$m, a highly asymmertrical directional coupler structure composed of a strongly guided ridge waveguide and a weakly guided strip-loaded waveguide was used. The optimized filter structure modeling has been obtained by using the spectral index method, effective index method, and the coupled mode theory. Operation at a center wavelength a 1.537.mu.m with a bandwidth of 1.8nm and transfer efficiency of 50-70% is experimentally achieved. For the purpose of center wavelength tuning, the carrier injection in p-n diode structure has been theoretically investigated. It has been found that the tuning range of nanometer can be easily obtained by moderate amount carrier injection. We also found that the bandwidth becomes broad as the center wavelength tuning increases.

  • PDF