• 제목/요약/키워드: Waveform parameter

검색결과 129건 처리시간 0.022초

SUS 304강의 하중파형에 따른 고온피로균열전파속도 및 전체하중파형의 평가방법의 연구 (A study on fatigue crack growth with loading waveform and analysis method for all loading waveform at elevated temperature in SUS 304 stainless steel)

  • 이상록;이학주;허정원;임만배
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.122-130
    • /
    • 1992
  • The effect of loading waveform on elevated temperature low-cycle fatigue crack growth behavior in a SUS 304 stainless steel have been investigated under symmetrical trangular (fast-fast), trapezoidal and asymmetrical(fast-slow, slow-fast) waveforms at 650.deg. C. It was found that the crack growth rate in fast-slow loading waveform appeared to be higher a little and the crack growth rate in slow-fast loading waveform much higer than that in fast-fast loading waveform, and difference in crack growth rate between fast-show and slow-fast waveforms nearly didn't appear in the region of da/dN>10/sup -2/ The crack growth rate in the trapezoidal loading waveform with t/sub h/=500sec appeared to be faster than that in slow(500sec)-fast(1sec). In addition, parameter modified J-integral could be considered as useful parameter for fatigue crack growth rate in all waveforms. The result obtained are as follow. da/dN=4.91*10/sup -3/ (.DELTA. J/sub c/)/sup 0.565/.

  • PDF

교류전동기를 위한 Parameter Adaptive Control 방식의 PWM 인버터에 관한 연구 (A Study on the Parameter Adaptive Current Controlled PWM Inverter for AC Drives.)

  • 황영문;안진우
    • 대한전기학회논문지
    • /
    • 제36권4호
    • /
    • pp.259-266
    • /
    • 1987
  • In order to drive motor control system precisely, the motor is to be controlled by mmfs and current with sinusoidal waveforms. In this paper the Delta Modulation (DM) Technique is used for generating PWM pulse with sinusoidal waveform. However the motor currents yet contain odd harmonics due to leakage inductances, speed and exitation. To reduce harmonics, the parameter adaptive control method is introduced. That is, Req.C parameter of Delta Modulator is controlled adaptively by parameter adaptor. The adaptive signal is achieved by the difference between motor current and reference waveform, and this signal is converted to the voltage commend signal by adaptive mechanism. The test reslts show that this system is operated smoothly over a wide range of motor speed and motor current is controlled to be sinusoidal waveform adaptively.

  • PDF

음향방출 파형 파라미터 필터링 기법을 이용한 실시간 음원 분류 (Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals)

  • 조승현;박재하;안봉영
    • 비파괴검사학회지
    • /
    • 제31권2호
    • /
    • pp.165-173
    • /
    • 2011
  • 음향방출기법은 대형 구조물의 구조건전성감시(SHM)를 위한 매우 효율적인 방법이지만, 롤러코스터 지지구조물처럼 승용물의 운행으로 인한 매우 큰 잡음이 일상적으로 존재하는 경우에는 균열 진전 신호만을 분류하여 실시간 감시를 수행하기가 쉽지 않다. 이와 같은 문제의 해결을 위해 본 연구에서는 실시간으로 음원의 분류가 가능한 파형 파라미터 필터링 기법을 제안하였다. 파형 파라미터 필터링 기법은 음향방출 신호의 파형 파라미터를 이용하여 음향방출 히트를 사전에 필터링함으로써 실시간으로 감시하고자 하는 대상 음원만을 분류해내는데 매우 유리한 점이 있다. 다양한 음원에 대해 음향방출 파형 파라미터를 측정 및 분석하여 제안한 기법의 타당성을 살펴보았다. 또한 파형 파라미터 필터가 내장된 음향 방출 시스템을 구축하고 이를 실제 롤러코스터 지지구조물에 적용하여 실시간 균열진전 감시를 위한 가능성을 타진하였다.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제25권6호
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

A Sequential LiDAR Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.681-691
    • /
    • 2010
  • LiDAR waveform decomposition plays an important role in LiDAR data processing since the resulting decomposed components are assumed to represent reflection surfaces within waveform footprints and the decomposition results ultimately affect the interpretation of LiDAR waveform data. Decomposing the waveform into a mixture of Gaussians involves two related problems; 1) determining the number of Gaussian components in the waveform, and 2) estimating the parameters of each Gaussian component of the mixture. Previous studies estimated the number of components in the mixture before the parameter optimization step, and it tended to suggest a larger number of components than is required due to the inherent noise embedded in the waveform data. In order to tackle these issues, a new LiDAR waveform decomposition algorithm based on the sequential approach has been proposed in this study and applied to the ICESat waveform data. Experimental results indicated that the proposed algorithm utilized a smaller number of components to decompose waveforms, while resulting IMP value is higher than the GLA14 products.

직렬인버어타 출력파형의 조화분석 (Fourier Analysis of Output Waveform of a Series Inverter)

  • 이영근;김종훈
    • 대한전자공학회논문지
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 1969
  • 직렬 Inverter 회로에 대해서 정상상태에서의 동작을 해석하여 출력파형을 조화분석하였다. 적당한 조건하에서는 출력파형은 정현파에 가깝고 기수차의 고조파만을 포함하고 있으며 기본파와 고조파와의 상대적 크기는 회로의 "Q"에만 관계하는 간단한 식으로 표시됨을 나타었다.

  • PDF

에지 위치 추정을 통한 이진 파형의 복원 (Restoration of a Bi-level Waveform by Estimation of Edge Locations)

  • 김정태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권7호
    • /
    • pp.327-331
    • /
    • 2006
  • We have proposed an image restoration method for a bi-level waveforms whose number of edges is known to us. Based on the information, we parametrize a bi-level waveform using the locations of edges and restore the waveform by estimating the parameter. We estimated the locations by maximizing the correlation coefficients between the hi-level waveform and the measured waveform. In experiments using two dimensional barcode images of the PDF417 specification, the proposed method showed better performance than conventional methods in the sense that the proposed method was able to decode barcode images that were not decoded by the conventional methods.

파형보간 코더에서 파라미터간 거리차를 이용한 가변비트율 기법 (A New Variable Bit Rate Scheme for Waveform Interpolative Coders)

  • 양희식;정상배;한민수
    • 대한음성학회지:말소리
    • /
    • 제65호
    • /
    • pp.81-91
    • /
    • 2008
  • In this paper, we propose a new variable bit-rate speech coder based on the waveform interpolation concept. After the coder extracted all parameters, the amounts of the distortions between the current and the predicted parameters which are estimated by extrapolation using past two parameters are measured for all parameters. A parameter would not be transmitted unless the distortion exceeds the preset threshold. At the decoder side, the non-transmitted parameter is reconstructed by extrapolation with past two parameters used to synthesize signals. In this way, we can reduce 26% of the total bit rate while retaining the speech quality degradation below 0.1 PESQ score.

  • PDF

J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구 (A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters)

  • 허정원;박원조
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

제세동기의 최적파형 발생을 위한 회로 파라미터에 관한 연구 (A Study on the Circuit Parameter for the Optimum Waveform of Defibrillator)

  • 김택수;박상희;고한우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.92-94
    • /
    • 1994
  • In designing defibrillator several points must be considered such as patient's transthoracic impedance, output energy level, peak current, tine duration of current waveform. Patient's transthoracic impedance depends on patient respectively and the health condition of patient. In this study, before the hardware implementation of defibrillator we determine the range of parameter values of circuit elements to derive optimal discharge waveform by predicting and analyzing the performance of designed circuit.

  • PDF