• 제목/요약/키워드: Wave-Trapping

검색결과 18건 처리시간 0.026초

고차진동을 이용하는 에너지포획형 압전 공진자와 필터의 변위분포에 관한 연구 (A Study on Particle Displacement Distributions of Energy-trapped Piezoelectric Resonators and Filters Utilizing the Harmonic Modes)

  • 이개명
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.954-962
    • /
    • 1998
  • Energy-trapped thickness vibrations of piezoelectric substrates are utilized in fabricating resonators and filters which have their operating frequencies in HF band. Normalized particle displacement distributions of the fundamental thickness shear vibration mode and overtone modes into the thickness direction in energy-trapped resonators and double-coupled filters were obtained by solving the wave equation and calculating the solved equations. These results show that as the number order of the harmonic mode in a energy-trapped resonator becomes larger, the degree of energy-trapping in the resonator increase, and if the conditions for energy-trapping become sufficiently weak, the energy-trapping effect of the harmonic mode which has the lower order disappears the earlier. Above simulation results were proved by the experiments.

  • PDF

에너지트랩 효과를 이용한 단일전극 세라믹 필터에 관한 연구 (Study on the One-Strip Electrode Ceramic Filter Using the Energy Trapping Effect)

  • 송준태;정인영
    • 대한전기학회논문지
    • /
    • 제40권1호
    • /
    • pp.73-81
    • /
    • 1991
  • In order to simulate the ceramic filter in the state of the one-strip electrode, the theory has been analyzed and a computer program has been developed using the energy trapping effect. The ceramic filters were fabricated using the PZT-4 specimen. The necessary condition that the ceramic filter has the energy trapping effect is that the electroded portion frequency should be smaller than the unelectroded portion frequency when the wave number is zero. Each of the average differences of the resonant point and bandwidth between by the theoretical calculations and by experiment results was 5.6[%] and 3.72[%]. It is considered that the one-strip ceramic filter having a desired characteristics and the lowest difference can be fabricated easily by means of the simulation developed in this paper and the fabrication methods.

  • PDF

Submerged Porous Plate Wave Absorber

  • PARK W.T.;LEE S.H.;KEE S.T.
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.9-14
    • /
    • 2005
  • In the present paper, the wave absorbing performance of the fully submerged horizontal porous plates has been investigated, numerically and experimentally. The submerged porous system is composed of multi-layered horizontal porous plates that are clamped at the vertical setwall, which are slightly inclined and placed vertically, in parallel, with spacing. The hydrodynamic interaction of incident waves with the rigid porous multi-layered plates was formulated within the context of linear wave-body interaction theory and Darcy's law. In order to validate the effectiveness of the present computing code, the numerical results were compared with the analytical and experimental results. It is found that triple horizontal porous plates with slight inclination, if properly tuned for wave energy dissipation against the standing waves in front of the vertical wall, can have high performances in reducing the reflected wave amplitudes against the incident waves over a wide range of wave frequency.

An array effect of wave energy farm buoys

  • Kweon, Hyuck-Min;Lee, Jung-Lyul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.437-446
    • /
    • 2012
  • An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present study presents that the floating buoy-type energy farm appears to be sufficiently feasible for trapping more energy compared to affixed cylinder duck array. It is also seen from the numerical results that the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

유한차분법을 이용한 3차원 지진파 전파 모의 (Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method)

  • 강태섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

페이즈 필드법을 이용한 박막형 태양전지의 광포획층 설계 (Design of Light Trapping System of Thin Film Solar Cell Using Phase Field Method)

  • 허남준;유정훈
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.973-978
    • /
    • 2014
  • 본 연구는 페이즈 필드법 기반으로 하는 위상최적화를 이용하여 박막형 태양 전지의 광포획 구조의 반사층 설계를 목표를 하였다. 이를 위하여 입사된 빛이 설계영역인 반사층에서 반사되어 원하는 방향으로 진행하도록 하고자 하였다. 또한 같은 방법을 근적외선 영역의 반사판의 설계에 적용한 적외선 피탐지 구조의 개념 설계를 수행하였으며, 페이즈 필드법 기반의 결과와 밀도법 기반의 결과를 비교하였다. 목적함수는 에너지의 흐름을 나타내는 포인팅 벡터값의 최대화로 설정하였고, 반사된 빛의 방향을 조절하기 위하여 지정된 측정영역에서 값을 측정하였다. 본 연구의 유한요소해석 및 최적화 과정은 상용 프로그램인 COMSOL과 Matlab 프로그램을 이용하여 수행되었다.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

공진장치를 이용한 단주기파랑과 고립파의 제어 (Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves)

  • 이광호;정성호;정진우;김도삼
    • 대한토목학회논문집
    • /
    • 제30권1B호
    • /
    • pp.89-100
    • /
    • 2010
  • 본 연구에서는 고파랑의 단주기파랑과 고립파를 동시에 저감시키기 위한 저감공으로 단주기파랑에 대해 기연구개발된 공진장치를 기설의 방파제 항구부에 부착하는 공법을 검토하였다. 이와 같은 저감공은 공진현상으로부터 단주기파랑의 입사에너지를 포획하여 기설의 방파제 배후로 전달되는 파랑에너지를 저감시키는 특성을 갖는다. 수치해석에 있어서 단주기파랑에 대해서는 연직선Green함수에 기초한 특이점분포법을, 고립파에 대해서는 3차원수치파동수로를 이용하는 3차원혼상류해석법을 각각 적용하였고, 기존의 수치해석결과 및 실험결과와 비교 분석하여 본 수치해석법의 타당성을 검증하였다. 이로부터 공진장치가 없는 경우와 대비 검토하여 단주기파랑 및 고립파의 제어에 대한 공진장치의 제어능을 다각도로 검토한 결과, 그의 유효성을 충분히 확인할 수 있었다. 그리고, 제어대상의 고립파에 대해 공진장치의 최적치수가 존재한다는 사실을 확인할 수 있었다.

VALVELSS 압전펌프 진동 해석 및 특성 (Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump)

  • 임종남;오진헌;임기조;김현후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

미소유체 밸브리스 압전펌프의 설계 및 특성 (Design and Characteristics of valveless micro-pump for small liquid delivery)

  • 임종남;오진헌;임기조;김현후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1275_1276
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein.

  • PDF