• Title/Summary/Keyword: Wave transformations

Search Result 31, Processing Time 0.028 seconds

3-Dimensional Analysis for Nonlinear Wave Forces Acting on Dual Vertical Columns and Their Nonlinear Wave Transformations (복수 연직 주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Shiin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • In the present work, wave transformation by vertical columns and its wave forces acting on them are discussed using a direct 3-D numerical model based on the VOF (Volume Of Fluid) method. The numerical results for wave transformations and wave forces are critically compared to an advanced experimental data, and provide the verification of the numerical model used in the present study. Overall model-data comparisons are good. After verification of the numerical model, it is used to simulate wave fields around dual vertical columns with arbitrary cross section, and the characteristics of nonlinear wave forces and wave transformations according to the variations of different cross section types of vertical columns, an interval of vertical columns and incident wave angle are discussed.

Wave Forces Acting on Vertical Cylinder and Their Wave Transformations by 3-Dimensional VOF Method (3차원 VOF법에 의한 연직 주상구조물에 작용하는 파력과 구조물에 의한 파랑변형 해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Sin, Dong-Hoon;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.12-21
    • /
    • 2007
  • As the economy grows and the population increases, we need to develop our coastal area and make use of it for various purposes. Specifically, investigation of the wave interactions on and around the vertical cylinders is very important in the design of the offshore or coastal structures. The nonlinear potential analysis developed so far, although very useful, has been found to be limited in application, as strong nonlinear waves generated by the interference between multilayered cylinders and wave impact forces by breaking waves can hardly be estimated. In this study, using a 3-Dimensional volume tracking method VOF(Volume of Fluid), based on Namer-Stokes equations, was developed to simulate highly nonlinear effects, such as breaking waves at the interface or complicated interference waves among structures. A numerical method for nonlinear interaction wave and vertical cylinders is newly proposed. The wave forces and wave transformations computed by the newly proposed numerical simulation method were compared to the other researcher's experimental results, and the results agree well. Based on the validation of this study, this numerical method is applied to the two vertical cylinders to discuss their nonlinear wave forces and wave transformations, according to the variations of separate distance of vertical cylinders.

Analysis of Wave Transformation and Velocity Fields Including Wave Breaking due to the Permeable Submerged Breakwaters (수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석)

  • 김도삼;이광호;김정수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Among various numerical methods of wave transformations including wave breaking by structure, models using VOF(Volume Of Fluid) method to trace free surface are getting into the spotlight recently. In order to analyze wave transformations and velocity of the wave fields due to the permeable submerged breakwater(PSB), This study applied VOF method to the two-dimensional wave channel installed line-source to generate waves and added dissipation zone to offer a non-reflective boundary. Hydraulic experiments was performed to obtain the application of two-dimensional numerical wave channel. The results of numerical experiments using the two-dimensional wave channel agree well with the experimental data. It was shown that vortices are formed behind the PSB, and in case of the 2-rowed PSB they also are occurred in between PSBs, strongly non-linear waves are developed on the crown of the PSB, and the direction of velocities in porous media is determined by the shape of free surface.

Galerkin Finite Element Model Based on Extended Mild-Slope Equation (확장형 완경사방정식에 기초한 Galerkin 유한요소 모형)

  • 정원무;이길성;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.174-186
    • /
    • 1998
  • A Galerkin's finite element model incorporating infinite elements for modeling of radiation condition at infinity has been developed, which is based on an extended mild-slope equation. To illustrate the validity and applicability of the present model, the example analyses were carried out for a resonance problem in the rectangular harbor of Ippen and Goda (1963) and for wave transformations over circular shoals of Sharp (1968) and Chandrasekera and Cheung (1997). Comparisons with the results obtained by hydraulic experiments and hybrid element method showed that the present model gives very good results in spite of the rapidly varying topography. Numerical experiments were also performed for wave transformations over a circular concave well which may be an alternative to conventional wave barriers.

  • PDF

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Wave Transformation of Submerged Breakwater with One Ray (단일 잠제에 의한 파랑변형에 관한 연구)

  • Kim, W.K.;Kang, I.S.;Kwak, K.S.;Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 1994
  • This study discusses the wave transformation(wave reflection and transmission) by a impermeable submerged breakwater with one ray, and integrated horizontal wave pressure acting on the structure. Numerical method in this study is based on the simplified eigenfunction expansion method and linear wave theory. Although this method is very simple, the results give good agreement with the one of the strict eigenfunciton expansion method, especially, in case that the crown width of the submerged breakwater becomes longer and its crown water depth shallower. Therefore, it is concluded that this simplified method is one good method in planning coastal structures as like the submerged breakwater in this study, and computing their wave transformations.

  • PDF

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

A Practical Application of Multiple Wave Models to the Small Fishery Harbor Entrance

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeon, Min-Su;Kang, Seok-Jin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.579-587
    • /
    • 2007
  • Samchunpo(Sin Hyang) Harbor is located in the bay of Sa Chun, the central south coast of Korean peninsula. The harbor and coastal boundaries have been protecting by natural coastal islands and shoals. Currently, The Sin Hyang harbor needs maintenance and renovation of the sheltered structures against the weather deterioration and typhoon damages. Consequently to support this, the calculation of accurate design wave through the typhoon wave attack is necessary. In this study, calculation of incident wave condition is simulated using steady state spectrum energy wave model(wide area wave model) from 50 years return wave condition. And this simulation results in wide offshore area were used for the input of the extended mild slope wave model at the narrow coastal area. Finally, the calculation of design wave at Sin Hyang harbor entrance was induced by Boussinesq wave model(detail area wave model) simulation. The numerical model system was able to simulate wave transformations from generation scale to shoreline or harbor impact. We hope these results will be helpful to the engineers doing placement, design, orientation, and evaluation of a wide range of potential solutions in this area.

Wave Reflection and Transmission Coefficients of Rubble Mound Breakwaters under Oblique Incident Waves (경사입사파랑중의 사석방파제에 의한 반사율과 투과율에 관한 연구)

  • 배기성;김도삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • By applying the Boundary Integral Equation Method (BIEM) to obliquely incident for Rubble Mound Breakwater (RMB), wave reflection and transmission the coefficients are studied numerically. The validity of and the present BIEM is confirmed by comparing it with 1)numerical results of the eigenfunction expansion method of Dalrymple et al.(1991), and 2)numerical results of the BIEM of Kojima et al.(1988). Therefore, the characteristics of RMB for obliquely incident waves are investigated according to the variations of the wave period, equivalent linear nondimensional friction coefficient and direction of incident waves. It is revealed that the wave transformations of obliquely incident waves are different from those of normally incident waves.

  • PDF

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.