3-Dimensional Analysis for Nonlinear Wave Forces Acting on Dual Vertical Columns and Their Nonlinear Wave Transformations

복수 연직 주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석

  • Lee, Kwang-Ho (Department of Civil Engineering, Nagoya University) ;
  • Lee, Sang-Ki (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Shiin, Dong-Hoon (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Do-Sam (Division of Civil and Environmental Engineering, Korea Maritime University)
  • 이광호 (나고야대학 대학원 공학연구과) ;
  • 이상기 (한국해양대학교 건설환경공학부) ;
  • 신동훈 (한국해양대학교 건설환경공학부) ;
  • 김도삼 (한국해양대학교 건설환경공학부)
  • Published : 2008.02.29

Abstract

In the present work, wave transformation by vertical columns and its wave forces acting on them are discussed using a direct 3-D numerical model based on the VOF (Volume Of Fluid) method. The numerical results for wave transformations and wave forces are critically compared to an advanced experimental data, and provide the verification of the numerical model used in the present study. Overall model-data comparisons are good. After verification of the numerical model, it is used to simulate wave fields around dual vertical columns with arbitrary cross section, and the characteristics of nonlinear wave forces and wave transformations according to the variations of different cross section types of vertical columns, an interval of vertical columns and incident wave angle are discussed.

본 연구에서는 복수의 대형 연직 주상구조물을 중심으로 구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형을 검토하며, 수치해석의 이론으로 쇄파나 강비선형 파랑을 고정도로 해석할 수 있는 Navier-Stokes방정식에 근거한 3차원 VOF(Volume Of Fluid)법을 적용하였다. 본 수치해석의 타당성을 검증하기 위해 파랑변형과 파력에 대한 기존의 수리실험결과와 본 수치해석결과를 비교 검토하였으며, 이로부터 2기로 구성된 임의형상의 연직 주상구조물에 대해 구조물 형상, 구조물 배치간격, 파의 입사각도 변화에 따른 파력과 파랑변형의 특성을 논하였다.

Keywords

References

  1. 김건우, 이창훈, 서경덕 (2004). 시간의존 파랑변형식에서의 내부조파: 선 조파기법과 원천함수기법, 대한토목학회논문집, 24(6B), 585-594
  2. 김도삼, 신동훈, 이봉재 (2001). 3차원 파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구, 한국해양공학회지, 16(3), 114-119
  3. 김도삼, 신동훈 (1999). 임의형상단면의 복수 연직 주상구조물에 작용하는 비선형파력과 비선형파랑변형에 관한 연구, 대한토목학회논문집, 19(II-6), 717-727
  4. 김도삼, 이광호, 유현상, 김창훈, 손병규 (2004). 불규칙파동장에 있어서 VOF법에 의한 투과성잠제의 파랑제어특성에 관한 연구, 한국해안.해양공학회지, 16(3), 121-129
  5. 김도삼, 이광호, 허동수, 김정수 (2001). VOF법에 기초한 불투과잠제 주변파동장의 수치해석, 대한토목학회논문집, 21(5-B), 551-560
  6. 이창훈 (1997). 시간의존 완경사방정식에서의 내부조파기법, 대한토목학회논문집, 17(II-4), 359-366
  7. 허동수, 염경선, 배기성 (2006). 혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향, 대한토목학회논문집, 26(5B), 563-572
  8. Brorsen, M. and Larsen, J. (1987). Source Generation of Nonlinear Gravity Waves with Boundary Integral Equation Method, Coastal Eng., 11, 93-113 https://doi.org/10.1016/0378-3839(87)90001-9
  9. Chakrabarti, S.K. and Tam, W.A. (1975). Interaction of Waves with Large Vertical Cylinder, J. Ship Res., 19, 23-33
  10. Chau, F.P. and Eatock, T.R. (1992). Second Order Wave Diffraction by a Vertical Cylinder, J. Fluid Mech., 240, 571-599 https://doi.org/10.1017/S0022112092000211
  11. Chorin, A.J. (1968). Numerical Solution of the Navier-Stokes Equations, Math. Comp., 22, 745-762 https://doi.org/10.2307/2004575
  12. Eatock, T.R. (1989). On Distribution of Second Order Pressure on Vertical Circular Cylinder, Applied Ocean Res., 11(4), 183-193 https://doi.org/10.1016/0141-1187(89)90017-5
  13. Ghalayini, S.A. and Williams, A.N. (1991). Nonlinear Wave Force on Vertical Cylinders of Arbitrary Cross Section, Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE, 115(6), 809-830
  14. Hinatsu, M. (1992). Numerical Simulation of Unsteady Viscous Nonlinear Waves Using Moving Grid System Fitted on a Free Surface, J. Kansai Soc. Nav. Archit. Japan, 217, 1-11
  15. Hirt, C.W. and Nichols, B.D. (1981). Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys., 39, 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  16. Hur, D.S. and Mizutani, N. (2003). Numerical Estimation of the Wave Forces Acting on a Three- Dimensional Body on Submerged Breakwater, Coastal Eng., 47, 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  17. Isaacson, M. (1978). Vertical Cylinders of Arbitrary Section in Wave, J. Waterway, Coastal and Ocean Eng., 104(WW4), 309-322
  18. Isaacson, M. and Cheung, K.F. (1991). Second Order Wave Diffraction Around Two-dimensional Bodies by Time-domain Method, Applied Ocean. Res., 13, 175-186 https://doi.org/10.1016/S0141-1187(05)80073-2
  19. John, F. (1950). On the Motions of Floating Bodies II, Comn. Pur Appl. Math., 3, 45-101 https://doi.org/10.1002/cpa.3160030106
  20. Kawasaki, K. (1999). Numerical Simulation of Breaking and Post Breaking Wave Deformation Process around a Submerged Breakwater, Coastal Eng. in Japan, 41(3), 201-223 https://doi.org/10.1142/S0578563499000139
  21. Kim, M.H. and Yue, D.K.P. (1989). The Complete Second- Oredr Diffraction Solution for an Axisymmetric Body, Part 1. Monochromatic Incident Waves, J. Fluid Mech., 200, 235-264 https://doi.org/10.1017/S0022112089000649
  22. Kioka, W. and Ishida, S. (1984). Diffraction Wave Force of Second-Approximation Acting on Vertical Cylinder, Japanese Conference on Coastal Eng., 620-624
  23. Kriebel, D.L. (1990). Nonlinear Wave Interaction with Vertical Cylinder, part I: Diffraction Theory, Ocean Eng., 17(4), 345-377 https://doi.org/10.1016/0029-8018(90)90029-6
  24. Lee, K.H. (2006). A study on Time Domain Analysis of Nonlinear Dynamic Interaction among Wave, Currents and Bed Materials, Doctoral thesis, Nagoya University, 169p
  25. MacCamy, R.C. and Fuchs, R.A. (1954). Wave Forces on Piles: A Diffraction Theory, Beach Erosion Board, Tech. Memo., 69, 1-17
  26. Molin, B. (1979). Second-Order Diffraction Loads upon Three- Dimensional Bodies, Applied Ocean Res., 1(4), 197-202 https://doi.org/10.1016/0141-1187(79)90027-0
  27. Ohyama, T. and Nadaoka, K. (1991). Development of a Numerical Wave Tank for Analysis of Non-linear and Irregular Wave Field, Fluid Dyn. Res., 8, 231-251 https://doi.org/10.1016/0169-5983(91)90045-K
  28. Sanada, M. (1998). A Study of Second-Approximation Analysis Results and Application for Nonlinear Diffraction Wave According to Large Coastal Structure, Doctoral thesis, Nagoya University, 223p
  29. Zienkiewicz, O.C., Kelly, D.W. and Bettess, P. (1977). The Finite Element Method for Determining Fluid Loadings on Rigid Structures-Two and Three Dimensional Formulation, Ch.4 in Numerical Methods in Offshore Eng., Wiley, London