• Title/Summary/Keyword: Wave structure

Search Result 2,780, Processing Time 0.028 seconds

Characteristics of Wave Exciting Forces on a Very Large Floating Structure with Submerged-Plate

  • Lee Sang-Min;Hong Chun-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2061-2067
    • /
    • 2005
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of Sm long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate and the fore part of VLFS. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method (MAC method) and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces acting on the structure behind the submerged plate.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Experiments for Wave Velocity Distribution in front of Composite Structure by Incident Wave Angles (입사각에 따른 혼성식구조물 전면의 유속분포 실험)

  • Lee, Jong-In;Moon, Gang Il;Lim, Ho Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.759-768
    • /
    • 2019
  • The extended Tanimoto formula has been widely used to estimate the stability for the toe protection of the composite structure. However, the extended Tanimoto formula usually over-estimates armor weight when the incident waves approach the structure obliquely because the formula incident originally considered the normally incident wave cases. In this study, three-dimensional hydraulic model experiments were conducted to investigate the horizontal wave velocity under monochromatic and random wave conditions to investigate the prediction capability of the extended Tanimoto formula under the different incident wave angle conditions. The maximum horizontal wave velocity was measured near the toe for the normally incident wave condition. In the case of obliquely incident waves, the maximum horizontal wave velocity was measured under the stem wave generation condition. The results of the experiments showed a good agreement with the results by Takahashi et al.

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF

Numerical Analysis of the Three-Dimensional Nonlinear Waves Caused by Breaking Waves around a Floating Offshore Structure (부유식 해양구조물 주위의 쇄파현상을 동반한 3차원 비선형성 파의 수치해석)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.62-73
    • /
    • 1996
  • Numerical simulation is made of the three-dimensional wave breaking motion about a part of a floating offshore structure containing a circular cylinder mounted vertically onto a lower hull in regular periodic gravity wave generated by a numerical wave maker. TUMMAC-VIII finite-difference method is newly developed for such a problem. By use of density-function technique the three-dimensional wave breaking motion is approximately implenented in the framework of rectangular grid system. A porosity technique is devised for the implementation of the no-slip bydy boundary conditions. The generation of breaking waves by the interaction of incident waves with the structure is well simulated and interesting features of breaking waves are revealed with containing degree of quantitative and qualitative accuracy.

  • PDF

An Application of CADMAS-SURF to the Wave run-up in Permeable Coastal Structures (투과성 해안구조물의 Wave Run-up에 대한 CADMAS-SURF의 적용)

  • YOON HAN-SAM;CHA JONG-HO;KANG YOON-KOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.49-55
    • /
    • 2005
  • We constructed and demonstrated a numerical CADMAS-SURF(V4.0) model that reproduces the wave run-up characteristics on the slope of coastal structures and applied it to a permeable coastal structure. We also compared the numerical model with published experimental results on the hydrodynamic phenomena of structures and some numerical results for a modified Pbreak model. In conclusion, the CADMAS-SURF model efficiently simulated wave run-up on the slope of a permeable coastal structure. The inflow/outflow effects from the porous structure boundary were approximately $15\%$ more than with the modified Pbreak model. Nevertheless, the descriptions of the internal hydraulic characteristics still could not be full!! exacted from the result(Fig. 1 참조)s obtained in our model experiment.

Damage detection on two-dimensional structure based on active Lamb waves

  • Peng, Ge;Yuan, Shen Fang;Xu, Xin
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-188
    • /
    • 2006
  • This paper deals with damage detection using active Lamb waves. The wavelet transform and empirical mode decomposition methods are discussed for measuring the Lamb wave's arrival time of the group velocity. An experimental system to diagnose the damage in the composite plate is developed. A method to optimize this system is also given for practical applications of active Lamb waves, which involve optimal arrangement of the piezoelectric elements to produce single mode Lamb waves. In the paper, the single mode Lamb wave means that there exists no overlapping among different Lamb wave modes and the original Lamb wave signal with the boundary reflection signals. Based on this optimized PZT arrangement method, five damage localizations on different plates are completed and the results using wavelet transform and empirical mode decomposition methods are compared.

An improved solid boundary treatment for wave-float interactions using ISPH method

  • Zheng, Xing;Lv, Xipeng;Ma, Qingwei;Duan, Wenyang;Khayyer, Abbas;Shao, Songdong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.329-347
    • /
    • 2018
  • The Smoothed Particle Hydrodynamics (SPH) method has proved to have great potentials in dealing with the wave-structure interactions. Compared with the Weakly Compressible SPH (WCSPH) method, the ISPH approach solves the pressure by using the pressure Poisson equation rather than the equation of state. This could provide a more stable and accurate pressure field that is important in the study of wave-structure interactions. This paper improves the solid boundary treatment of ISPH by using a high accuracy Simplified Finite Difference Interpolation (SFDI) scheme for the 2D wave-structure coupling problems, especially for free-moving structure. The proposed method is referred as the ISPH_BS. The model improvement is demonstrated by the documented benchmark tests and laboratory experiment covering various wave-structure interaction applications.

Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure

  • Singh, Abhishek Kumar;Chaki, Mriganka Shekhar;Hazra, Bristi;Mahto, Shruti
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface. Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common interface of composite structure in context of the present problem which serves as a salient feature of the present study.