An Application of CADMAS-SURF to the Wave run-up in Permeable Coastal Structures

투과성 해안구조물의 Wave Run-up에 대한 CADMAS-SURF의 적용

  • YOON HAN-SAM (Research Center for Ocean Industrial Development, Pukyong National University) ;
  • CHA JONG-HO (Dept. of Ocean Engineering, Pukyong National University) ;
  • KANG YOON-KOO (Engineering and Construction Group, Samsung Corporation)
  • 윤한삼 (부경대학교 해양산업개발연구소) ;
  • 차종호 (부경대학교 해양공학과) ;
  • 강윤구 (삼성물산(건설부문))
  • Published : 2005.08.01

Abstract

We constructed and demonstrated a numerical CADMAS-SURF(V4.0) model that reproduces the wave run-up characteristics on the slope of coastal structures and applied it to a permeable coastal structure. We also compared the numerical model with published experimental results on the hydrodynamic phenomena of structures and some numerical results for a modified Pbreak model. In conclusion, the CADMAS-SURF model efficiently simulated wave run-up on the slope of a permeable coastal structure. The inflow/outflow effects from the porous structure boundary were approximately $15\%$ more than with the modified Pbreak model. Nevertheless, the descriptions of the internal hydraulic characteristics still could not be full!! exacted from the result(Fig. 1 참조)s obtained in our model experiment.

Keywords

References

  1. 김도삼, 이광호, 김정수 (2002). '수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석', 한국해안.해양공학 회지, 제14권, 제2호, pp 171-181
  2. 남인식, 윤한삼, 김종욱, 류청로 (2002). '투과성 해안구조물의 소상파 및 내부수위변동에 변동에 관한 수치모델링', 한국해양공학회지, 제16권, 제5호, pp 34-40
  3. 전재우, 윤한삼, 류청로 (2002). '투과성 방파제의 내부수위 변동과 방파제의 수리특성', 한국해양공학회지, 제16권, 제3 호, pp 46-53
  4. 해양수산부 (1999), 항만 및 어항 설계기준(上)
  5. Bruun, P. and Gunbak, A.R. (1977). 'Stability of Sloping Structures in Relation to${\xi}=tan{\alpha}\;/\;{\sqrt}{H/L_o}$, Risk Criteria in Design', Coastal Engineering, Vol 1, pp 287-322 https://doi.org/10.1016/0378-3839(77)90020-5
  6. Coastal Development Institute of Technology (2001). 'Investigation and Development of Numerical Wave Flume: CADMAS-SURF', pp 5-16. (in Japanese)
  7. Garcia, N., Lala, J.L. and Losada, I.J. (2004). '2-D Numerical Analysis of Near-Field Flow at Low-Crested Permeable Breakwaters', Coastal Engineering, vol 51, pp 991-1020 https://doi.org/10.1016/j.coastaleng.2004.07.017
  8. Hirt, C.W. and Nichols, B.D. (1981). 'Volume of Fluid (VOF) Method for Dynamics of Free Boundaries', J. of Computatinal Physics, vol 39, pp 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  9. Hsu, T.J., Sakakiyama, T. and Liu, P.L.F. (2002). 'A Numerical Model for Wave Motions and Turbulence Flows in Front of a Composite Breakwater', Coastal Engineering, Vol 46, pp 25-50 https://doi.org/10.1016/S0378-3839(02)00045-5
  10. Hur, D.S.. and Mizutani, N. (2003). 'Numerical Estimation of Wave Forces Acting on a Three-Dimensional Body on Submerged Breakwater', Coastal Engineering, Vol 47, pp 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  11. Kobayashi, N. and Wurjanto, A. (1992). Numerical Model for Random Waves on Permeable Coastal Structures, Technical Report. CACR-92-02
  12. Liu, P. L.F., Lin, P., Chang, K.A. and Sakakiyama, T. (1999). 'Numerical modeling of Wave Interaction with Porous ?Structures', Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol 125, No 6, pp 332-333 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(332)
  13. Sakakiyama, T. and Kajima, R. (1992). 'Numerical Simulation of Nonlinear Wave Interacting with Permeable Breakwaters', Proc. 22nd lnt. Conference on Coastal Engineering, ASCE, Venice, pp 1517-1530