DOI QR코드

DOI QR Code

Damage detection on two-dimensional structure based on active Lamb waves

  • Peng, Ge (The Aeronautic Key Laboratory of Smart Material and Structure, Nanjing University of Aeronautics and Astronautics) ;
  • Yuan, Shen Fang (The Aeronautic Key Laboratory of Smart Material and Structure, Nanjing University of Aeronautics and Astronautics) ;
  • Xu, Xin (The Aeronautic Key Laboratory of Smart Material and Structure, Nanjing University of Aeronautics and Astronautics)
  • Received : 2005.02.28
  • Accepted : 2006.01.30
  • Published : 2006.04.25

Abstract

This paper deals with damage detection using active Lamb waves. The wavelet transform and empirical mode decomposition methods are discussed for measuring the Lamb wave's arrival time of the group velocity. An experimental system to diagnose the damage in the composite plate is developed. A method to optimize this system is also given for practical applications of active Lamb waves, which involve optimal arrangement of the piezoelectric elements to produce single mode Lamb waves. In the paper, the single mode Lamb wave means that there exists no overlapping among different Lamb wave modes and the original Lamb wave signal with the boundary reflection signals. Based on this optimized PZT arrangement method, five damage localizations on different plates are completed and the results using wavelet transform and empirical mode decomposition methods are compared.

Keywords

References

  1. Boller, C. (2000), 'Next generation structural health monitoring and its integration into aircraft design', Int. J. Systems Sci., 31(11), 1333-1349 https://doi.org/10.1080/00207720050197730
  2. Crawley, E. A. and DeLuis, J. (1987), 'Use of piezoelectric actuators as elements of intelligent structures', AIAA J., 25(10), 1375-1385
  3. Diamanti, K., Soutis, C. and Hodgkinson, J. M. (2004), 'Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams', Composites. Part A: Applied Science and Manufacturing, 1-7
  4. Giurgiutiu, V. (2003), 'Piezoelectric wafer active sensor embedded ultrasonics in beans and plates', Experimental Mechanics, 43(4), 428-449 https://doi.org/10.1007/BF02411348
  5. Huang, N. E. et al.. (1998), 'The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis', Proc. Royal Soc. London A, 454, 903-995
  6. Ikegami, R. (1999), 'Structural health monitoring: assessment of aircraft customer needs, fu-kuo chang', Proceedings of the 2nd International Workshop on Structural Health Monitoring, Standford CA September 8-10, 12-23
  7. Jeong, H. (2001), 'Analysis of plate wave propagation in anisotropic laminates using a wavelet transform', NDT&E International, 34, 185-190 https://doi.org/10.1016/S0963-8695(00)00056-6
  8. Jeong, H. and Jang, Y.-S. (2000), 'Fracture source location in thin plates using the wavelet transform of dispersive waves', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(3), 612-619 https://doi.org/10.1109/58.842048
  9. Keilers, C. H. and Chang, F-K. (1995), 'Identifying delaminations in composite beams using built-in piezoelectrics: Part I - experiments and analysis; Part II an identification method', J. Intelligent Mater: Sys. Struct., 6, 649-672 https://doi.org/10.1177/1045389X9500600506
  10. Kessler, S. S., Spearing, S. M. and Soutis, C. (2002), 'Damage detection in composite materials using Lamb wave methods', Smart Mater Struct., 11, 269-278 https://doi.org/10.1088/0964-1726/11/2/310
  11. Lee, G. C. and Liang, Z. (1999), 'Development of a bridge monitoring system, Fu-Kuo chang', Proceedings of the 2nd International Workshop on Structural Health Monitoring, Standford CA September 8-10, 56-67
  12. Lemistre, M. and Balageas, D. (2001), 'Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing', Smart Mat. Struct., 10, 504-501 https://doi.org/10.1088/0964-1726/10/3/312
  13. Lin, X. and Yuan, F. G.. (2001), 'Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies', Smart Mat. Struct., 10, 1-7 https://doi.org/10.1088/0964-1726/10/1/301
  14. Monkhouse, R. S. C., Wilcox, P. W., Lowe, M. J. S., Dalton, R. P. and Cawley, P. (2000), 'The rapid monitoring of structures using interdigital Lamb wave transducers', Smart Mater. Struct., 9, 304-309 https://doi.org/10.1088/0964-1726/9/3/309
  15. Moulin, E., Assaad, J. and Delebarre, C. (1997), 'Piezoelectric transducer embedded in a composite plate: Application to Lamb wave generation', J. Appl. Physics, 82(5), 2049-2055 https://doi.org/10.1063/1.366015
  16. Niethammer, M. and Jacobs, L. J. (2001), 'Time-frequency representations of Lamb waves', J. Acoustic Society of American, 109(5), 1841-1847 https://doi.org/10.1121/1.1357813
  17. Peng, G. and Yuan, S. (2005), 'Damage localization on two-dimensional structure based on wavelet transform and active Lamb wave-based method', Materials Science Forum, 475-479, 2119-2122
  18. Ridgway, J., Larsen, M. L., Waldman, C. H., et al. (2003), 'Analysis of ocean electromagnetic data using a Hilbert spectrum approach', AIP Conference Proceedings, 676, 333-338
  19. Saravanos, D. A. et al, (1995), 'Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators', J. Mater. Systems and Struct., 6, 350-363 https://doi.org/10.1177/1045389X9500600306
  20. Tao, Baoqi, et al. (1997), Smart Mat. Struct., Beijing, National Defense Industry Press
  21. Toyama, N. and Takatsubo, J. (2004), 'Lamb wave method for quick inspection of impact-induced delamination in composite laminates', Composites Sci. Tech., 64, 1293-1300 https://doi.org/10.1016/j.compscitech.2003.10.011
  22. Valdez, S. H. D. and Soutis, C. (2000), 'Structural intergrity monitoring of CFRP laminates using piezoelectric devices', (ECCM), CD-ROM, Proceedings of the European Conference on Composite Materials, Brighton, UK, 4-7 June
  23. Sergio, H., Valdes, D. and Soutis, C. (2002), 'Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves', J. Acoust. Soc. Am., 111(5), 2026-2033 https://doi.org/10.1121/1.1466870
  24. Viktorov, I. A. (1967), Rayleigh and Lamb wave, New York, Plenum Press
  25. Worden, K, Pierce, S. G, et al. (2000), 'Detection of defects in composite plates using Lamb waves and novelty detection', Int. J. Systems Sci., 31(11), 1397-1409 https://doi.org/10.1080/00207720050197785
  26. Wu, C., Sun, X., Duan, S. and Fang, T. (2005), 'Influence of damaged area on Lamb wave propagation in composite plate', Comput. Mech., 35(2), 85-93 https://doi.org/10.1007/s00466-004-0602-0
  27. Xu, Y.-D., Yuan, S.-F. and Peng, G. (2004), 'Study on two-dimensional damage location in structure based on active Lamb wave detection technique', Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 25(5), 476-479
  28. Yang, J. N., Lin, S. and Pan, S. (2002), 'Damage identification of structures using Hilbert-Huang spectral analysis', Proceedings of 15th ASCE Engineering Mechanics Conference, New York, ASCE, 70-77

Cited by

  1. Design and Experiment of PZT Network-based Structural Health Monitoring Scanning System vol.22, pp.5, 2009, https://doi.org/10.1016/S1000-9361(08)60133-8
  2. On development of a multi-channel PZT array scanning system and its evaluating application on UAV wing box vol.151, pp.2, 2009, https://doi.org/10.1016/j.sna.2009.02.032
  3. Investigation on modulation of multi-frequency ultrasonic waves in structures with quadratic nonlinearity vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.043