Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2017.08.001

An improved solid boundary treatment for wave-float interactions using ISPH method  

Zheng, Xing (College of Shipbuilding Engineering, Harbin Engineering University)
Lv, Xipeng (College of Shipbuilding Engineering, Harbin Engineering University)
Ma, Qingwei (School of Mathematics, Computer Science and Engineering, City, University of London)
Duan, Wenyang (College of Shipbuilding Engineering, Harbin Engineering University)
Khayyer, Abbas (Department of Civil and Earth Resources Engineering, Kyoto University)
Shao, Songdong (Department of Civil and Structural Engineering, University of Sheffield)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.10, no.3, 2018 , pp. 329-347 More about this Journal
Abstract
The Smoothed Particle Hydrodynamics (SPH) method has proved to have great potentials in dealing with the wave-structure interactions. Compared with the Weakly Compressible SPH (WCSPH) method, the ISPH approach solves the pressure by using the pressure Poisson equation rather than the equation of state. This could provide a more stable and accurate pressure field that is important in the study of wave-structure interactions. This paper improves the solid boundary treatment of ISPH by using a high accuracy Simplified Finite Difference Interpolation (SFDI) scheme for the 2D wave-structure coupling problems, especially for free-moving structure. The proposed method is referred as the ISPH_BS. The model improvement is demonstrated by the documented benchmark tests and laboratory experiment covering various wave-structure interaction applications.
Keywords
ISPH; Moving boundary; SFDI; Wave-float interactions; ISPH_BS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., Graziani, G., 2013. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 245, 456-475.   DOI
2 Mei, C.C., Black, J.L., 1969. Scattering of surface waves by rectangular ob- stacles in waters of finite depth. J. Fluid Mech. 38, 499-511.   DOI
3 Monaghan, J.J., Kos, A., Issa, N., 2003. Fluid motion generated by impact. J. Water Port Coast Ocean Eng. 129, 250-259.   DOI
4 Najafi-Jilani, A., Rezaie-Mazyak, A., 2011. Numerical investigation of floating breakwater movement using SPH method. Int. J. Nav. Archit. Ocean Eng. 3 (2), 122-125.   DOI
5 Oger, G., Doring, M., Alessandrini, B., Ferrant, P., 2007. An improved SPH method: towards higher order convergence. J. Comput. Phys. 225 (2), 1472-1492.   DOI
6 Quinlan, N.J., Basa, M., Lastiwka, M., 2006. Truncation error in mesh-free particle methods. Int. J. Numer. Meth. Eng. 66, 2064-2085.   DOI
7 Ren, B., He, M., Dong, P., Wen, H.J., 2015. Nonlinear simulations of wave- induced motions of a freely floating body using WCSPH method. Appl. Ocean Res. 50, 1-12.   DOI
8 Rudman, M., Cleary, P.W., 2016. The influence of mooring system in rogue wave impact on an offshore platform. Ocean Eng. 115, 168-181.   DOI
9 Shadloo, M.S., Zainali, A., Sadek, S.H., Yildiz, M., 2011. Improved Incom- pressible Smoothed Particle Hydrodynamics method for simulating flow around bluff bodies. Comput. Methods Appl. Mech. Eng. 200 (9-12), 1008-1020.   DOI
10 Shao, S.D., Lo, E.Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787-800.   DOI
11 Bonet, J., Lok, T.S.L., 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180 (1-2), 97-115.   DOI
12 Adami, S., Hu, X.Y., Adams, N.A., 2012. A generalized wall boundary con- dition for smoothed particle hydrodynamics. J. Comput. Phys. 231 (21), 7057-7075.   DOI
13 Aly, A.M., Minh, T.N., Lee, S.W., 2015. Numerical analysis of liquid sloshing using the incompressible Smoothed Particle Hydrodynamics method. Adv. Mech. Eng. 7 (2), 765741.   DOI
14 Asai, M., Aly, A., Sonoda, Y., Sakai, Y., 2012. A stabilized incompressible SPH method by relaxing the density invariance condition. J. Appl. Math. 11, 2607-2645.
15 Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112-129.   DOI
16 Zhang, S., Morita, K., Fukuda, K., Shirakawa, N., 2006. An improved MPS method for numerical simulations of convective heat transfer problems. Int. J. Numer. Methods Fluids 51 (1), 31-47.   DOI
17 Sriram, V., Ma, Q.W., 2012. Improved MLPG_R method for simulating 2D interaction between violent waves and elastic structures. J. Comput. Phys. 231 (22), 7650-7670.   DOI
18 Takeda, H., Miyama, S.M., Sekiya, M., 1994. Numerical-simulation of viscous-flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92 (5), 939-960.   DOI
19 Yildiz, M., Rook, R.A., Suleman, A., 2009. SPH with the multiple boundary tangent method. Int. J. Numer. Methods Eng. 77 (10), 1416-1438.   DOI
20 Zheng, X., Ma, Q.W., Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation. J. Comput. Phys. 276, 291-314.   DOI
21 Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., Shimosako, K., 2014. On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46, 104-115.   DOI
22 Zheng, X., Shao, S.D., Khayyer, A., Duan, W.Y., Ma, Q.W., Liao, K.P., 2017. Corrected first-order derivative ISPH in water wave simulations. Coast. Eng. J. 59 (1), 1750010.
23 Canelas, R.B., Dominguez, J.M., Crespo, A.J.C., Gomez-Gesteira, M., Ferreira, R.M.L., 2015. A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int. J. Numer. Methods Fluids 78 (9), 581-593.   DOI
24 Dilts, G., 1999. Moving-least-squares-particle-hydrodynamics-I: consistency and stability. Int. J. Numer. Methods Eng. 44 (8), 1115-1155.   DOI
25 Faltinsen, O.M., 1977. Numerical solutions of transient nonlinear free-surface motion outside or inside moving bodies. In: Proceedings of the Second International Conference on Numerical Ship Hydrodynamics. University of California, Berkeley, pp. 347-357.
26 Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M., 2012. SPHysics - development of a free-surface fluid solver - Part 1: theory and formulations. Comput. Geosci. 48, 289-299.   DOI
27 Gotoh, H., Khayyer, A., 2016. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy 2 (3), 251-278.   DOI
28 Gui,Q.,Dong, P., Shao, S., 2015. Numerical study of PPE source termerrors in the incompressible SPH models. Int. J. Numer. Methods Fluids 77 (6), 358-379.   DOI
29 Ikari, H., Gotoh, H., Khayyer, A., 2011. Numerical simulation on moored floating body in wave by improved MPS method. In: Coastal Structures 2011, vols. 1 & 2, pp. 308-317.
30 Jun, C.W., Sohn, J.H., Lee, K.C., 2015. Dynamic analysis of a floating body in the fluid by using the smoothed particle hydrodynamics. J. Mech. Sci. Technol. 29 (7), 2607-2613.   DOI
31 Lin, P.Z., Liu, P.L.F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239-264.   DOI
32 Koshizuka, S., Nobe, A., Oka, Y., 1998. Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids 26, 751-769.   DOI
33 Lee, B.H., Jeong, S.M., Hwang, S.C., Park, J.C., Kim, M.H., 2013. A particle simulation of 2-D vessel motions interacting with liquid-sloshing cargo. CMES Comput. Model. Eng. Sci. 91 (1), 43-63.
34 Leroy, A., Violeau, D., Ferrand, M., Kassiotis, C., 2014. Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J. Comput. Phys. 261, 106-129.   DOI
35 Liu, M.B., Liu, G.R., 2006. Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56, 19-36.   DOI
36 Liu, W.K., Jun, S., Zhang, Y.F., 1995. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081-1106.   DOI
37 Liu, X., Lin, P.Z., Shao, S.D., 2014. An ISPH simulation of coupled structure interaction with free surface flows. J. Fluids Struct. 48, 46-61.   DOI
38 Ma, Q.W., 2008. A new meshless interpolation scheme for MLPG_R method. CMES-Comput. Model. Eng. Sci. 23 (2), 75-89.
39 Macia, F., Antuono, M., Gonzlez, L.M., Colagrossi, A., 2011. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. Prog. Theor. Phys. 125, 1091-1121.   DOI
40 Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touze, D., Graziani, G., 2011. delta-SPH model for simulating violent impact flows. Comput. Methods Appl. Mech. Eng. 200 (13-16), 1526-1542.   DOI