• 제목/요약/키워드: Wave scattering

검색결과 502건 처리시간 0.023초

비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답 (Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves)

  • 이진호
    • 한국지진공학회논문집
    • /
    • 제26권6호
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

광펄스신호와 연속광원을 이용한 광섬유내의 stimulated Brillouin scattering 비교 연구 (Stimulated Brillouin scattering in optical fiber for pulsed lights compared to continuous wave lights)

  • 이한협;최현범;이동한;남성현;김대연;윤형규
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.338-342
    • /
    • 2003
  • 최근 활발하게 연구되고 있는 광섬유 센서에 사용되는 광펄스신호가 광섬유에 입력될 때 발생할 수 있는 stimulated Brillouin scattering현상에 대하여 연구하였다. 펄스광원의 평균 광세기가 연속광원의 광세기와 같으면 SBS현상도 같아진다는 것을 알 수 있었다. 연구결과를 통해 연속광원을 이용한 SBS측정 결과를 이용하여 광펄스신호가 입력되었을 때 SBS 현상을 예측할 수 있다.

산란 음향 홀로그래피의 구현 방법론 (Realization of Acoustic Scattering Holography)

  • 김양한
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1101-1106
    • /
    • 2004
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose a method of which makes acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. This method provides the scattered fields of each wave-number components of incident fields. We express the relationship of wave-number components between incident fields and scattered fields using scattering matrix which is transfer matrix of wave-number components. Lastly, we prove the relation between wave-number components of incident and scattered field by experiments. The errors which are caused by measurements and decomposition methods are also analyzed.

산란 음향 홀로그래피의 구현 방법론 (Realization of acoustic scattering holography)

  • 이상협;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.640-644
    • /
    • 2003
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose experimental method of acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. In particular we can get the scattered fields of each wave-number components of incident fields. We express the relationship of wave-number components between incident fields and scattered fields using scattering matrix which is transfer matrix of wave-number components. Lastly, we prove the relation between wave-number components of incident and scattered field by experiments. The errors which are caused by measurements and decomposition methods are also analyzed.

  • PDF

Polarization Scattering Property of Cascaded Polarization Controllers

  • Muga, Nelson J.;Ferreira, Mario F.;Pinto, Armando Nolasco
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.838-840
    • /
    • 2007
  • The relation between the allowed range of variation of polarization controller wave-plates angles and the respective polarization scattering properties is investigated. It is demonstrated that a nearly uniform polarization scattering over the Poincare sphere is obtained using a concatenation of three polarization controllers with angles randomly changed between $-{\pi}$/4 and ${\pi}$/4. It is also shown that an improvement of the scattering properties is obtained if the configuration angles are allowed to change between $-{\pi}$/2 and ${\pi}$/2.

  • PDF

다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼 (Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves)

  • 조일형
    • 한국해안해양공학회지
    • /
    • 제19권6호
    • /
    • pp.586-595
    • /
    • 2007
  • 고유함수전개법을 사용하여 구한 파일 방파제에 의한 규칙파의 산란 해석해를 다방향 불규칙파로 확장하였다. 규칙파중 입사파의 주파수 그리고 입사각을 변화시키면서 구한 반사율과 투과율 그리고 파랑하중을 가지고 산란파 스펙트럼과 하중 스펙트럼을 표현하였다. 주파수와 입사각의 함수인 2차원 스펙트럼을 적분하여 산란파와 파랑하중의 대푯값을 구하고 방향분포함수, 주파향, 잠긴깊이 그리고 공극율이 투과율과 파랑하중에 미치는 영향을 살펴보았다.

경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구 (A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method)

  • 이준현;이서일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

Source & crustal propagation effects on T-wave envelopes

  • 윤숙영;박민규;이원상
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2010년도 학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

횡등방성 원통 셸에 의한 수중 음파의 공명 산란 (Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells)

  • 김진연
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF