• 제목/요약/키워드: Wave number

검색결과 1,652건 처리시간 0.024초

예선회가 존재하는 회전유동장의 불안정성 수치해석 (Numerical Instability Analysis of the Rotating Boundary-Layer flow Including Pre-Swirl)

  • 황영규;이윤용;이광원
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.415-423
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1, -0.5, and 0, using linear stability theory. Detailed numerical values of the disturbance wave number. wave frequency. azimuth angle. radius (Reynolds number, Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small fe and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.

주전해역의 파랑의 통계적 변동 특성 (Characteristics on the Variation of Ocean Wave Statistics in the Chujeon Sea)

  • 손병규;류청로
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.20-27
    • /
    • 2001
  • After using the filtering method, wave parameters are calculated by the spectral analysis and wave by wave analysis. Extreme environments and higher wave characteristics int he Chujeon Sea are analyzed using the observed wave data. Higher wave has been intensely emphasized as an important environmental force parameter in several recent research works. The aims of this study are to summarize the distribution of extreme environment for wind waves, and to find occurrence probability of higher wave in Chujeon Sea. Ocean wave statistics varying with sea state are found to respond linearly to the spectral peakedness parameter Qp, mean run-length and Ursell number. Although the spreading of the field results is large, it may be concluded that the tendency of wave group formation depends on the spectral peakedness parameter Qp. Extreme wave is estimated to apply various model distribution functions by using the monthly maximum significant wave parameters which can be used to the design and analysis of coastal structures.

  • PDF

난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구 (An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer)

  • 이승배;권오섭;이창준
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

두 평행한 관의 출구로부터 방출되는 트윈파에 관한 연구 (A Study of the Twin Impulse Wave Discharged from the Exit of Two Parallel Tubes)

  • 강성황;김재호;김희동
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.962-967
    • /
    • 2005
  • The twin-impulse wave discharged from two parallel tubes is investigated to see flow patterns, compared with the single impulse wave. In the present study, the merging phenomena and propagation characteristics of the impulse waves are investigated by experiment and numerical computation. The Harten-Yee's total variation diminishing scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number Ms of incident shock wave is lower than 1.5 and the distance between the tubes is between 1.2 and 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system in order to validate the computational result. It is shown that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the tube distance and the incident shock Mach number, Ms. The predicted Schlieren images show a good agreement with the measured twin-impulse wave.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

열전달 촉진 핀-관 열교환기의 공기측 압력강화 및 열전달 특성에 관한 실험 (Experimental Study of Air Side Pressure Drop and Heat Transfer Characteristics of Enhanced Fin-Tube Heat Exchangers)

  • 윤백;길용현;박현연;김영생
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1555-1563
    • /
    • 1998
  • Heat transfer and pressure drop for ${\phi}10.07$ dry surface fin-tube heat exchanger with wave and wave-slit fins were measured for different fin spacings and number of tube rows. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of wave fin is 1.5mm. The experiments were performed for 4 different fin spacings, 1.3, 1.5, 1.7 and 2.0mm, and the number of tube rows were 1,2 and 3 rows. The present results were compared with the previous results for the wave depth of 2mm. Also hydrophilic coated and bare fins were tested. Correlations for Colburn j-factor and friction factor were developed.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

초음속 디퓨져에서 발생하는 수직충격파 진동의 이론해석 (Analysis of Normal Shock-Wave Oscillation in a Supersonic Diffuser)

  • 김희동
    • 한국추진공학회지
    • /
    • 제2권3호
    • /
    • pp.36-46
    • /
    • 1998
  • 초음속 유동에서 발생하는 충격파는 일반적으로 충격파 상류와 하류의 압력비에 의해 일반적으로 결정된다. 본 연구에서는 충격파의 진동현상을 규명하기 위한 연구의 일환으로, 미소교란법(small perturbation method)을 이용하여 이론해석을 수행하였으며, 충격파 하류의 유동장에 에너지 손실을 적용하여 충격파의 안정성을 이론적으로 해석하였다. 이론해석에서는 충격파 상류에 경계층 유동에서 발생하는 난류변동이나 주류에서의 압력변동이 충격파의 진동과 관련된다고 생각하여, 충격파 상류의 유동에 미소압력변동을 적용하여 충격파의 진동특성을 해석하였다. 본 연구의 결과들을 타 연구의 결과와 비교하였으며, 열선풍속계(hot wire)를 이용한 실험적 연구결과와 비교하였다.

  • PDF

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

고속도카메라에 의한 액주의 분열기구에 관한 연구 (The study of the breakup mechanism of a liquid jet by using a high speed camera)

  • 김덕줄;이충원
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.708-716
    • /
    • 1989
  • 본 연구의 목적은 고속도 카메라로 촬영된 순간사진들로부터 액주면의 파장, 진폭, 파의 진행속도 및 교란의 성장속도 등을 측정하여 액주의 분열에 미치는 기류 및 액량의 효과를 구하였고, 또 이것을 선행 연구자들의 이론 및 실험과 비교분석하여 액주의 분열 기구를 밝히는 데 있다.