Abstract
The twin-impulse wave discharged from two parallel tubes is investigated to see flow patterns, compared with the single impulse wave. In the present study, the merging phenomena and propagation characteristics of the impulse waves are investigated by experiment and numerical computation. The Harten-Yee's total variation diminishing scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number Ms of incident shock wave is lower than 1.5 and the distance between the tubes is between 1.2 and 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system in order to validate the computational result. It is shown that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the tube distance and the incident shock Mach number, Ms. The predicted Schlieren images show a good agreement with the measured twin-impulse wave.