• Title/Summary/Keyword: Wave models

Search Result 911, Processing Time 0.024 seconds

Solution Comparisons of Modified Mild Slope Equation and EFEM Plane-wave Approximation (수정 완경사파랑식과 EFEM 평면파 근사식의 해 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • In order to test the accuracy between the modified mild slope equation (MMSE) without evanescent modes and the plane-wave approximation (PA) of eigenfunction expansion method, various numerical results from both models are presented. In this study, analytical solutions of two models are employed, one based on the MMSE derived by Porter (2003) and the other on the scatterer method of PA by Seo (2008a). Judging from direct comparisons against existing results of rapidly varying topography, the PA model gives better predictions of the wave propagation than the MMSE model.

Parabolic Wave Equations Based on $Pad{\acute{e}}$ Approximants - Model Applicable to Incidence Angle $80^{\circ}$ ($Pad{\acute{e}}$ 근사에 의한 포물형 파랑 근사식 - 입사각 $80^{\circ}$까지 적용 모형)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.375-384
    • /
    • 2007
  • Parabolic approximation wave models based on $Pad{\acute{e}}$ approximants are presented of which the $Pad{\acute{e}}$(15, 15) is shown to be applicable to incidence angle $80^{\circ}$ in comparison with the exact solution of a constant sloping bed. After introducing a systematic way of the derivation to the parabolic wave equation, parabolic models are obtained in this study upto the 15th order and several numerical results are given to wave transformation in a constant sloping bed.

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar (mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법)

  • Jiheon Kang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

Wave Characteristic in the Axially Loaded Axial-Bending-Shear Coupled Composite Laminated Beams (축 방향 하중을 받는 인장-굽힘-전단이 연성된 복합재 적층보의 파동특성)

  • Jang, In-Joon;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2650-2652
    • /
    • 2011
  • The fiber reinforced composite materials have many advantages due to their high strength-to-density ratios. Thus they have been widely used in many industrial applications. As the wave propagation are closely related to dynamic analysis of structures, it is very important to predict them. This paper presents a wave propagation in the axially loaded axial-bending-shear coupled composite laminated beams which are represented by the Timoshenko beam models based on the first-order shear deformation theory.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

Sequential Mesh Coding using Wave Partitioning

  • Kim, Tae-Wan;Ahn, Jeong-Hwan;Jung, Hyeok-Koo;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1507-1510
    • /
    • 2002
  • In this paper, we propose a sequential mesh cod- ing algorithm using the vertex pedigree based on the wave partitioning. After a mesh model is partitioned into several small processing blocks (SPB) using wave partitioning, we obtain vertices for each SPB along circumferences defined by outer edges of the attached triangles. Once all the vertices within each circumference are arranged into one line, we can encode mesh models

  • PDF

Sensitivity of Input Parameters in the Spectral Wave Model

  • Park, Hyo-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.

Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks (이어도 주변 파고분포에 대한 수리모형실험)

  • Chun Insik;Shim Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • The present data concerns the wave height distribution around the Ieodo underwater rocks and it was obtained from a 3D hydraulic model experiment which was performed in 1999 by Konkuk University and Korea Ocean Research and Development Institute. The experiment was separately undertaken for 4 different wave directions (NNW, SE, S, NNW) under which wave heights were measured at every 1m interval within the preset grid area, 16m×18m. It was observed that the wave breaking occurred on the top of the Ieodo model for all wave directions. This data may be effectively used for improving or verifying the performance of numerical wave propagation models in the area with the local breaking wave zones.

Evolution of Surface Profiles of Breaking Waves Generated by Directional Wave Focusing (다방향 파랑집중에 의한 쇄파의 파형특성 연구)

  • Hong Keyyong;Choi Hak-Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • Directional breaking waves are generated by the component wave focusing both in direction and frequency based on constant wave steepness and constant wave amplitude spectrum models. The generated breaking waves are classified in the incipient, single and multi breaking waves. The characteristics of directional breaking waves are investigated in terms of surface profile parameters of wave crest steepness and asymmetry. The evolution of breaking wave characteristics is analyzed in a view of focusing efficiency. It shows that the front steepness and vertical asymmetry play an important role in breaking process, while the crest rear steepness and horizontal asymmetry are nearly constant during the process. The superposition of directional components greatly enhances the focusing efficiency and it suggests that characteristics of directional breaking waves may significantly different from uni-directional ones.

  • PDF