• 제목/요약/키워드: Wave models

검색결과 917건 처리시간 0.025초

Stochastic Gravitational Wave Background in 0.1-10 Hz

  • Park, Chan;Ahn, Sang-Hyeon;Bae, Yeong-Bok;Kang, Gungwon;Kim, Chunglee;Kim, Whansun;Oh, John J.;Oh, Sang Hoon;Son, Edwin J.;Lee, Yong Ho
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.53.2-53.2
    • /
    • 2017
  • Stochasitc gravitational wave background (SGWB) is expected to be contributed by primordial sources (e.g. inflation signature) and astrophysical sources (e.g., incoherent superposition of a large numbers of compact binary inspirals throughout in the Universe). Theoretically, SGWB is predicted to span in a broad frequency range between less than nHz up to kHz. Many gravitational-wave (GW) detectors such as LIGO or LISA aim to detect or constrain SGWB in different frequency band that is most sensitive for each detector. In this talk, we focus on the prospectives of constraining the energy density of SGWB between 0.1-10 Hz. We introduce the characteristics of SGWB and representative models for primordial and astrophysical sources. Then, we propose a signal extraction scheme to detect SGWB using one or several omni-directional GW detectors such as SLGT(Superconducting Low-frequency Gravitational-wave Telescope). Considering SLGT sensitivity, we discuss how to observe SGWB in 0.1-10 Hz if we have SLGT network. Finally, we highlight interesting SGWB models that can be constrained in 0.1-10 Hz with SLGT.

  • PDF

수정 완경사파랑식과 EFEM 평면파 근사식의 해 비교 (Solution Comparisons of Modified Mild Slope Equation and EFEM Plane-wave Approximation)

  • 서승남
    • 한국해안·해양공학회논문집
    • /
    • 제21권2호
    • /
    • pp.117-126
    • /
    • 2009
  • 억류파를 제외한 수정 완경사파랑식과 고유함수 전개법의 평면파 근사식에 대한 정밀도를 검토하기 위해 다수의 수치실험 결과를 제시하였다. 본 연구에서 두 해석해가 사용되었으며 하나는 수정 완경사파랑식에 대한 Porter(2003)의 해이고 다른 하나는 평면파 근사식에 산란체법을 적용한 서(2008a)의 해이다. 급변 지형에서의 파랑변형에 대한 기존 결과와의 직접 비교를 통해 평면파 근사식 모형이 수정 완경사파랑식 보다 잘 기술하는 것으로 나타났다.

$Pad{\acute{e}}$ 근사에 의한 포물형 파랑 근사식 - 입사각 $80^{\circ}$까지 적용 모형 (Parabolic Wave Equations Based on $Pad{\acute{e}}$ Approximants - Model Applicable to Incidence Angle $80^{\circ}$)

  • 서승남
    • 한국해안해양공학회지
    • /
    • 제19권4호
    • /
    • pp.375-384
    • /
    • 2007
  • [ $Pad{\acute{e}}$ ] 근사에 의한 포물형 근사모형들을 제시하였고 $Pad{\acute{e}}$(15, 15) 근사모형은 일정 경사의 지형에 대한 엄밀해와 비교할 때 입사각 $80^{\circ}$까지 적용 가능함을 보였다. 포물형 근사식에 대한 체계적인 유도방법을 보인 후, 본 연구에서는 15차 $Pad{\acute{e}}$ 근사모형까지 나타내었고 일정 경사지형에서의 파랑변형에 대한 수치결과들을 제시하였다.

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법 (Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar)

  • 강지헌
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

축 방향 하중을 받는 인장-굽힘-전단이 연성된 복합재 적층보의 파동특성 (Wave Characteristic in the Axially Loaded Axial-Bending-Shear Coupled Composite Laminated Beams)

  • 장인준;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2650-2652
    • /
    • 2011
  • The fiber reinforced composite materials have many advantages due to their high strength-to-density ratios. Thus they have been widely used in many industrial applications. As the wave propagation are closely related to dynamic analysis of structures, it is very important to predict them. This paper presents a wave propagation in the axially loaded axial-bending-shear coupled composite laminated beams which are represented by the Timoshenko beam models based on the first-order shear deformation theory.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

Sequential Mesh Coding using Wave Partitioning

  • Kim, Tae-Wan;Ahn, Jeong-Hwan;Jung, Hyeok-Koo;Ho, Yo-Sung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1507-1510
    • /
    • 2002
  • In this paper, we propose a sequential mesh cod- ing algorithm using the vertex pedigree based on the wave partitioning. After a mesh model is partitioned into several small processing blocks (SPB) using wave partitioning, we obtain vertices for each SPB along circumferences defined by outer edges of the attached triangles. Once all the vertices within each circumference are arranged into one line, we can encode mesh models

  • PDF

Sensitivity of Input Parameters in the Spectral Wave Model

  • 박효봉
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.

이어도 주변 파고분포에 대한 수리모형실험 (Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks)

  • 전인식;심재설
    • 한국해안해양공학회지
    • /
    • 제17권1호
    • /
    • pp.55-59
    • /
    • 2005
  • 본 자료는 과거 이어도 해양과학기지의 건설과 관련하여 건국대학교와 한국해양연구소가 공동으로 수행한 이어도 수중암초 주변의 파랑변형에 대한 수리모형실험 결과이다. 실험은 총 4개의 파향 (NNW, SE, S, SSW) 각각에 대하여 이어도 정상부 주변 16m×18m의 영역에서 1m 간격으로 파고를 계측하였으며, 4개 파향 공히 이어도 정상에서 쇄파가 발생함을 관찰하였다. 이 자료는 기존의 파랑전파 수치모델의 성능개선과 관련하여 국소적 쇄파역에서의 모델성능을 검증하는데 매우 유용하게 사용될 수 있을 것으로 기대된다.