• Title/Summary/Keyword: Wave model

Search Result 4,130, Processing Time 0.032 seconds

Characteristics of Wave Trasnformation in Gamcheon Harbor (감천항내의 파랑변형 특성)

  • 김재중;김기철;이정만
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.399-408
    • /
    • 1999
  • Copeland’s(1985) hyperbolic mild-slope equation including diffraction refraction and reflection in the wave field is used as a governing equation in this study. The result of Maruyama & Kajima(1985) is used to calculate wave direction and that of Watanabe & Maruyama(1986) is used as a energy dissipation formula. Numerical solutions are obtained by the Leap-Frog scheme and compared with Watanabe & Maruyama’s (1984) hydraulic experimental results and numerical simulation results for the detached breakwater. This wave model is applied to a detached breakwater and compared with Watanabe and Maruyama’s (1984) hydraulic model results to check the characteristics of reflected wave field around a detached breakwater. The distribution of wave height and we phase in front of a detached breakwater is more accurate than the Watanabe and Maruyama’s numerical results. The results from our wave model show good agreements with the others and also show nonlinear effects around the detached breakwater. This model is applied to the Gamcheon harbor of pusan. the field observations were carried out at Pusan harbor wave station in 1986-1995 and the results were accepted as a design wave condition in this study. The wave height and wave period was measured by Dong-A university at one station in the Gamcheon harbor in 1996-1997 and used as a calibration criterion. The measured data were used as input data for the numerical simulation and also compared with simulated results. The numerical simulation shows a fairly good results which considering the effect of topographic characteristics and effect of narrow entrance due to two separated breakwaters in Gamcheon harbor. The wave distribution characteristics inside Gamcheon harbor is quite different with the offshore wave direction and wave period.

  • PDF

Calculation of Wave Amplitude Functions, Wave Resistance, Wave Elevation Along the Hull, Sinkage and Trim by First-Order Thin-Ship Theory (얇은배 선형이론에 의한 진폭영수 조피저항 선측파고, 침하와 Trim의 계산)

  • Gang, Sin-Hyeong;Lee, Yeong-Gil;Hyeon, Beom-Su
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.153-167
    • /
    • 1982
  • From first-order thin-ship theory, we can obtain the" wave resistance, wave amplitude functions, wave elevation along the hull, sinkage and trim of a ship moving with constant speed into calm water. Generally, these calculations of ship is called with Michell’s Theory, and there is all the difference between calculated wave resistance and residual resistance from conventional wave resis¬tance test. But, these calculated results are important reference materials for initial hull form design procedure. Various calculated results for Shearer’ s Model, Wigley’s Model and Series 60 4210W Model have been calculated using this theory. The results are compared with the corresponding experimental values, and the agreement between theoretical and experimental values is considered satisfactory.

  • PDF

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

A Study on the Performance of WAVE Communication System using Jakes Channel Model (Jakes 채널 모델을 이용한 WAVE 통신시스템 성능에 관한 연구)

  • Oh, Se-Kab;Choi, Jae-Myeong;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.943-949
    • /
    • 2009
  • In this paper, the 5.9GHz WAVE(Wireless Access in Vehicular Environments) channel modeling is used by the Jakes channel model for the suitability of the fast wireless channel fluctuation. The performance analysed the fading signal constellation and the spectrum in the IEEE 802.11p spectrum mask, the Doppler effect, the modulation scheme. In addition, the vehicular speed, exactly the performance analysis the WAVE communication systems follow the Doppler effect.

  • PDF

A Study on the Extension of WAM for Shallow Water (WAM모형의 천해역 확장에 관한 연구)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify this model, two numerical simulations for hydraulic experiments of Chawla et al.(1998) and Beji and Battjes(1993) are performed. The computed results show good agreements with measured ones. To identify its applicability to real sea, it is applied to storm wave modelling for typhoon Maemi. Numerical results compared with measured ones at Geoje, Busan and Ulsan show reasonable wave height estimations.

Modeling of Wave Breaking in Spectral Wave Evolution Equation (스펙트럼 파랑모형에서의 쇄파모형)

  • Cho, Yong-Jun;Ryu, Ha-Sang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.303-312
    • /
    • 2007
  • There is still a controversy going on about how to model energy dissipation due to breaking over frequency domain. In this study, we unveil the exact structure of energy dissipation using stochastic wave breaking model. It turns out that contrary to our present understanding, energy dissipation is cubically distributed over frequency domain. The verification of proposed model is conducted using the acquired data during SUPERTANK Laboratory Data Collection Project (Krauss et al., 1992). For further verification, we numerically simulate the nonlinear shoaling process of Conoidal wave over a beach of uniform slope, and obtain very promising results from the viewpoint of a skewness and asymmetry of wave field, usually regarded as the most fastidious parameter to satisfy.

Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam (물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델)

  • Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

Wave Prediction in a Harbour using Deep Learning with Offshore Data (딥러닝을 이용한 외해 해양기상자료로부터의 항내파고 예측)

  • Lee, Geun Se;Jeong, Dong Hyeon;Moon, Yong Ho;Park, Won Kyung;Chae, Jang Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.367-373
    • /
    • 2021
  • In this study, deep learning model was set up to predict the wave heights inside a harbour. Various machine learning techniques were applied to the model in consideration of the transformation characteristics of offshore waves while propagating into the harbour. Pohang New Port was selected for model application, which had a serious problem of unloading due to swell and has lots of available wave data. Wave height, wave period, and wave direction at offshore sites and wave heights inside the harbour were used for the model input and output, respectively, and then the model was trained using deep learning method. By considering the correlation between the time series wave data of offshore and inside the harbour, the data set was separated into prevailing wave directions as a pre-processing method. As a result, It was confirmed that accuracy and stability of the model prediction are considerably increased.