• Title/Summary/Keyword: Wave loading

Search Result 435, Processing Time 0.023 seconds

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

Reactive Acoustic Filter based on the Phase Cancellation Effect (위상 반전 현상을 이용한 덕트 소음 제거기)

  • 강종민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.600-606
    • /
    • 1999
  • A reactive type acoustic filter is developed based on the phase cancellation effect which is occurring in the plane wave propagation through the two paths where the cross sectional areas are reversely changing. The theory is experimentally validated by the use of a cylindrical duct and an inserted hollowed cone of which vertex part is eliminated. Noise attenuation and the filtered frequency are dependent on the area variation and the effective length of the filter. Experimental comparison shows that the filtered frequencies of 1st and 2nd mode are lower than the analytical prediction due to the mass loading effects, and the 3rd mode is in good agreement. The proposed filter can be applied as an in-duct noise filter for improving the sound quality in a narrow space for various industrial applications.

  • PDF

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 1. EMERGY Evaluation for Shellfish Production in Gamak Bay (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성 평가 1. 가막만 패류양식의 에머지 평가)

  • Oh, Hyun-Taik;Lee, Suk-Mo;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.841-856
    • /
    • 2008
  • This research outlines a new method for evaluation of shellfish production in Gamak Bay based on the concept of EMERGY. Better understanding of those environmental factors influencing oyster production and the management of oyster stocks requires the ability to assess the real value of environmental sources such as solar energy, river, tide, wave, wind, and other physical mechanisms. In this research, EMERGY flows from environment sources were 76% for shellfish aquaculture in Gamak Bay. EMERGY yield ratio, Environmental Loading Ratio, and Sustainability Index were 4.26, 0.31 and 13.89, respectively. Using the Emergy evaluation data, the predicted maximum shellfish aquaculture production in Gamak Bay and the FDA (Food and Drug Administration, U.S.) designated area in Gamak Bay were 10,845 ton/y and 7,548 ton/yr, respectively. Since the predicted shellfish production was approximately 1.3 times more than produced shellfish production in 2005, the carrying capacity of Gamak Bay is estimated to be 1.3 times more than the present oyster production.

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

Ultrasonic Nondestructive Evaluation of Creep-Induced Cavities (크리프 기공의 초음파 비파괴평가에 관한 연구)

  • Jang, Young-Su;Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.110-117
    • /
    • 1999
  • In order to ultrasonically evaluate creep cavities pure copper samples were subjected to creep test and their microstructures were examined. Ultrasonic velocities. frequency-dependent magnitude spectra and attenuations were measured on a series of copper samples obtained from the different stages of creep test. Velocities measured in three directions with respect to the loading axis decreased and their anisotropy increased as a function of the creep-induced porosity. The anisotropic behavior could be attributed to the progressive change of pore shape and preferred orientation as the creep advanced. The 2% porosity by volume decreased the longitudinal and shear wave velocities by 11% and 4%, respectively. Furthermore, both velocities decreased nonlinearly with the porosity. As the creep damage developed, the magnitude spectra lost high frequency components and their central frequencies shifted to lower values. The attenuation showed almost linear behavior in the frequency range used. Normalized velocity, central frequency shift and attenuation slope were selected as nondestructive evaluation parameters. These results were presented and showed good relations with the porosity content.

  • PDF

Development of an SH-SAW Sensor for Detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Pak Yukeun Eugene;Roh Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

Reliability Assessment against Ultimate Bending Moment of Ships′ Hull Girder (선체의 최종굽힘 모멘트에 대한 신뢰성 검토)

  • Joo-Sung Lee;P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.103-112
    • /
    • 1992
  • The ultimate bending moment of ships is one of the principle strength considered in ship design. Several methods have been proposed to predict the ultimate bending moment and its major part is, in general, predicting the ultimate compressive strength of stiffened panels. In this paper, made is the review on the methods and formulae of predicting the ultimate compressive strength and they are applied to predicting the ultimate bending moment. Safely levels of three bulk carriers have been derived evaluated for two loading conditions, stray, light ship condition and full load condition, and wave bending by Classification Society Rule(ABS, DnV and Lloyd Rule). The present reliability analysis problem is strictly non-linear and the Advanced First-Order Reliability Method has been used. From the results of parametric studies, the methods of predicting the ultimate compressive strength of stiffened panels are compared from the view point of their applicability to the reliability assessment of ships structures. The paper ends wish a brief discussion drawn from the parametric studies and the extension of the study is described.

  • PDF

Active Control of a New Cargo Handling System Adapted for Time-Varying Tide (조수간만의 차를 고려한 새로운 하역 시스템의 능동 제어)

  • Hyoung-Seok Kim;Dar-Do Chung;Seung-Bok Choi;Jae-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.61-71
    • /
    • 1999
  • This paper resents a novel cargo system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-tim position control. As a preliminary phase, a small-sized model of the cargo system is designed and constructed. The model consists of three principal components ; container palette transfer(CPT) car, platform with lifting columns and cargo ship. The platform activated by the electro-rheological(ER) valve-cylinder is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme incorporating time sequence and PID(proportional-integral-derivative) controller is formulated and implemented. Both the simulated and the measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

  • PDF

Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion (수중폭발에 의한 해중철도의 간이 충격 응답 해석)

  • Seo, Sung-Il;Sa-Gong, Myung;Son, Seung-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • To design a submerged floating railway that is safe against underwater explosions, railway behavior must be investigated and clarified. In this paper, shock waves and impulse pressures generated by a charge away from the submerged floating railway are expressed using experimental formulas. The submerged floating railway tethered by mooring lines is modeled as a simply supported beam with elastic springs. Finite element analysis for the beam model subjected to impulse loading is conducted so that the response of the submerged floating railway can be investigated. For design purposes, a simplified analysis method combined with dynamic load factor is proposed for the same model. Maximum deformation and internal forces are calculated and compared with the time dependent analysis results. It is shown that the simplified analysis results show good agreement.

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea (한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자)

  • Lim, Dhong-Il;Kim, Young-Ok;Kang, Mi-Ran;Jang, Pung-Kuk;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.