DOI QR코드

DOI QR Code

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea

한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자

  • 임동일 (한국해양연구원 남해연구소) ;
  • 김영옥 (한국해양연구원 남해연구소) ;
  • 강미란 (한국해양연구원 남해연구소) ;
  • 장풍국 (한국해양연구원 남해연구소) ;
  • 신경순 (한국해양연구원 남해연구소) ;
  • 장만 (한국해양연구원 남해연구소)
  • Published : 2007.12.30

Abstract

Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

Keywords

References

  1. 김종구, 박철길, 김광수. 1994. 하계 마산만의 부영양화 제어를 위한 생태계 모델의 적용. 한국환경과학회지, 3, 185- 195
  2. 김학균. 1989. 마산만의 편모조 적조의 발생과 환경특성. 국립수산진흥원 연구보고, 43, 1-40
  3. 배세진, 유신재. 1991. 마산만 식물플랑크톤의 단기적 변화양상: 1. 동태. 한국해양학회지, 26, 67-76
  4. 이미경, 임동일, 엄인권, 신응배, 정회수. 2003. 영일만 수질의 계절변화와 공간분포 특성. 대한환경공학회지, 25, 898-908
  5. 이찬원, 권영택. 1994. 마산만 준설에 따른 해양환경 종합 모니터링. 경남대학교 환경문제연구소 보고서, 264 p
  6. 이찬원, 권영택, 양기섭, 장풍국, 김봉진, 한성대. 1997. 폐쇄성 해역의 오염부하 특성과 해역 환경변화. 한국해양환경 공학회 추계학술대회 논문집, 281-290
  7. 임동일, 노경찬, 장풍국, 강선미, 정회수, 정래홍, 이원찬. 2007. 한국 서해 경기만 연안역에서 수질환경의 시-공간 적 변화 특성과 조절 요인. Ocean and Polar Res., 29, 135-153 https://doi.org/10.4217/OPR.2007.29.2.135
  8. 조경제, 최만영, 곽승국, 임성호, 김대윤, 박종규, 김영의. 1998. 마산-진해만의 수질 부영양화 및 계절변동. 한국해양학회지 바다, 3, 193-202
  9. 한국해양연구원. 2006. 남해 특별관리해역의 환경위해성평가 연구 (I) 마산연안 중심연구. 592 p
  10. 한국해양연구원. 1999. 진해-마산만 수질환경 관리모델 개발 (II). 395 p
  11. Bidle, K.D. and F. Azam. 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 397, 508-512 https://doi.org/10.1038/17351;
  12. Bidle, K.D., M. Manganelli, and F. Azam. 2002. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science, 298, 1980-1984 https://doi.org/10.1126/science.1076076
  13. Billen, G., C. Lancelot, and M. Mayberk. 1991. N, P, Si retention along the aquatic continuum from land to ocean. p. 19-44. In: Ocean Margin Processes in Global Change. ed. by R.F.C. Matoura, J.M. Martin, and R. Wollast. John Wiley & Sons, New York
  14. Chester, R. 1990. Marine Geochemistry. Unwin Hyman, London, 689 p
  15. Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys., 34, 127-168 https://doi.org/10.1029/96RG00986
  16. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Progr. Ser., 210, 223-253 https://doi.org/10.3354/meps210223
  17. Diaz, R.J. and R. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and behavioural responses of benthic macrofauna. Oceanogr. Mar. Bio. An Annual Review, 33, 245-303
  18. Domingues, R.B., A. Barbosa, and H. Galvao. 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuar. Coast. Shelf Sci., 64, 249-260 https://doi.org/10.1016/j.ecss.2005.02.017
  19. Edmond, J.M., A. Spivack, B.C. Grant, H. Ming-Hui, C. Zexiam, C. Sung, and Z. Xiushau. 1985. Chemical dynamics of the Changjiang estuary. Cont. Shelf Res., 4, 17-36 https://doi.org/10.1016/0278-4343(85)90019-6
  20. Fisher, T.R., E.R. Peele, J.W. Ammerman, and L. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82, 51-63 https://doi.org/10.3354/meps082051
  21. Fisher, T.R., J.M. Melack, J.U. Grobbelaar, and R.W. Howarth. 1995. Nutrient limitation of phytoplankton and eutrophication of inland, estuarine, and marine waters. In: Phosphorus in the Global Environment. ed. by H. Tiessen. John Wiley & Sons Ltd., Chichester, p. 301- 322
  22. Gle, C., Y.D. Amo, B. Sautour, P. Laborde, and P. Chardy. 2007. Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuar Coast. Shelf Sci., in press https://doi.org/10.1016/j.ecss.2007.07.043
  23. Harrison, W.G. 1993. Nutrient recycling in producton experiments. ICES Mar. Sci. Sym., 197, 149-158
  24. Humborg, C., V. Ittekkot, A. Cociasu, and B.V. Bodungen. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385-388 https://doi.org/10.1038/386385a0
  25. Jickells, T.D. 1998. Nutrient biogeochemistry of the coastal zone. Science, 281, 217-222 https://doi.org/10.1126/science.281.5374.217
  26. Justic, D., N.N. Rabalais, and R.R. Turner. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull., 30, 41-46 https://doi.org/10.1016/0025-326X(94)00105-I
  27. Kinney, E.H. and C.T. Roman. 1998. Response of primary producers to nutrient enrichment in a shallow estuary. Mar. Ecol. Prog. Ser., 163, 89-98 https://doi.org/10.3354/meps163089
  28. Lee, M.O. and J.K. Kim. 2007. Characteristics of algal blooms in the southern coastal waters of Korea. Mar. Environ. Res. (in press) https://doi.org/10.1016/j.marenvres.2007.09.006
  29. Ornolfsdottir, E.B., S.E. Lumsden, and J.L. Pinckney. 2004. Nutrient pulsing as a regulator of phytoplankton abundance and community composition in Galveston Bay, Texas. J. Exp. Mar. Biol. Ecol., 303, 197-220 https://doi.org/10.1016/j.jembe.2003.11.016
  30. Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on composition of seawater. The Sea, 2, 26-77
  31. Ritter, C. and P.A. Montagna. 1999. Seasonal hypoxia and models of benthic response in a Texas bay. Estuaries, 22, 7-20 https://doi.org/10.2307/1352922
  32. Stanley, I.D., F.H.A. Timothy, R.C. Stephen, R.I. Anthony, L.J. Robert, F.K. James, E.L. Nancy, and G.T. Monica. 2000. Ecology. Oxford University Press Inc
  33. Thompson, R.C., T.P. Crowe, and S.J. Hawkins. 2002. Rocky intertidal communities: Past environmental changes, present status and predictions for the next 25 years. Environ. Conserv., 29, 168-191 https://doi.org/10.1017/S0376892902000115
  34. Ward, L. and R. Twilley. 1986. Seasonal distributions of suspended particulate material and dissolved nutrients in a coastal plain estuary. Estuaries, 9, 156-168 https://doi.org/10.2307/1352127
  35. Weber, H.H. and H.V. Thurman. 1991. Marine Biology. HaperCollins Pub., New York. 424 p
  36. Wong, G.T.E., G.C. Gong, K.K. Liu, and S.C. Pai. 1998. Excess nitrate in the East China Sea. Estuar. Coast. Shelf Sci., 46, 411-418 https://doi.org/10.1006/ecss.1997.0287
  37. Yoo, K.I. 1991. Population dynamics of dinoflagellate community in Masan Bay with a note on the impact of environmental parameters. Mar. Pollut. Bull., 23, 185-188 https://doi.org/10.1016/0025-326X(91)90672-F
  38. Yin, K., P.-Y. Qian, M.C.S. Wu, J.C. Chen, L. Huang, X. Song, and W. Jian. 2001. Shift from P to N limitation of phytoplankton biomass across the Pearl River estuarine plume during summer. Mar. Ecol. Prog. Ser., 221, 17-28 https://doi.org/10.3354/meps221017
  39. Yu, Z., X. Song, W. Huo, and B. Zhang. 2001. Blooming of Skeletonema costatum in relationship to environmental factors in Jiaozhou Bay, China. The Yellow Sea, 7, 84- 89

Cited by

  1. Water Quality Characteristics Along Mid-western Coastal Area of Korea vol.30, pp.4, 2008, https://doi.org/10.4217/OPR.2008.30.4.379
  2. Characteristics of environmental condition and planktonic organisms in ship's ballast water originating from international ports of Japan vol.17, pp.9, 2016, https://doi.org/10.5762/KAIS.2016.17.9.245
  3. Statistical Analysis on the Quality of Surface Water in Jinhae Bay during Winter and Spring vol.33, pp.3, 2011, https://doi.org/10.4217/OPR.2011.33.3.291
  4. Mercury and methylmercury flux estimation and sediment distribution in an industrialized urban bay vol.158, 2014, https://doi.org/10.1016/j.marchem.2013.11.004
  5. Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea vol.16, pp.1, 2011, https://doi.org/10.7850/jkso.2011.16.1.027
  6. Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay vol.15, pp.5, 2014, https://doi.org/10.5762/KAIS.2014.15.5.3345
  7. Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs vol.21, pp.6, 2015, https://doi.org/10.7837/kosomes.2015.21.6.617
  8. Dominance and Survival Strategy of Toxic Dinoflagellate Alexandrium tamarense and Alexandium catenella Under Dissolved Inorganic Nitrogen-limited Conditions vol.16, pp.1, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.1.25
  9. Long-Term Variations of Water Quality in Jinhae Bay vol.17, pp.4, 2014, https://doi.org/10.7846/JKOSMEE.2014.17.4.324
  10. Hypoxia in Korean Coastal Waters: A Case Study of the Natural Jinhae Bay and Artificial Shihwa Bay vol.5, pp.2296-7745, 2018, https://doi.org/10.3389/fmars.2018.00070