• Title/Summary/Keyword: Wave loading

Search Result 435, Processing Time 0.025 seconds

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability (손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성)

  • KIM MI-KYUNG;AHN BYUNG-GUN;KIM JIN-WOOK;PARK IN-DUCK;AHN SEOK-HWAN;NAM KI-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

Fatigue Behavior of Concrete Beam Using CFRP Rebar (CFRP 보강근을 이용한 콘크리트 보의 피로거동)

  • Zhang, Pei-Yun;Kim, Okk-Yue;Cui, Xian
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.495-501
    • /
    • 2019
  • Recently, research has been carried out into the use of carbon fiber reinforced polymer (CFRP), which has good tensile strength and corrosion resistance, as an alternative to rebar. But as of yet, the research into fatigue failure of CFRP is insufficient. In this paper, an analysis was performed of the mechanical behavior and failure patterns of CFRP reinforced concrete beams according to static and cyclic loads, in order to evaluate the safety and validity of CFRP rebar as an alternative material for rebar. The cyclic load ranged from 10 % to 70% of the ultimate load, and was loaded at a speed of 3Hz using a sine wave in the form of a three-point loading method. Through the static load test, the maximum load or stiffness of the beam was found to increase remarkably with the increase of the reinforcement, but the fatigue test showed that the number of repetitions decreased and the amount of deflection increased with the increase of the reinforcement.

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

Numerical Analysis on Nonlinear Sloshing Problem using Finite Element Method (유한 요소법을 이용한 비선형 슬러싱 문제 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Cho Seok-Kyu;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.216-223
    • /
    • 2004
  • A nonlinear sloshing problem is numerically simulated. During excessive sloshing the sloshinginduced impact load can cause a critical damage on the tank structure. A three-dimensional free-surface flow in a tank is formulated in the scope of potential flow theory. The exact nonlinear free-surface condition is satisfied numerically. A finite-element method based on Hamiltons principle is employed as a numerical scheme. The problem is treated as an initial-value problem. The computations are made through an iterative method at each time step. The hydrodynamic loading on the pillar in the tank is computed.

  • PDF

In-Plane Collision Analysis of Perforated Steel Plates (면내 충돌에 의한 유공 강판의 거동 해석)

  • Kang, Dong-Baek;Lee, Ju-Won;Na, Won-Bae;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • In many cases, open-type plate breakwaters use plates with multiple holes; the holes serve as energy dissipaters and weight reducers. Because of the multi-holes configuration, stress concentration should be considered during the design process. Among several design loading conditions, the loads from a possible collision with a man-made vessel or other unexpected events many damage a multi-perforated steel plate. In that case, the structural behavior of a multi-perforated steel plate is quite significant, and is not well understood. This study presents a collision analysis for a multi-perforated steel plate. First, four different perforation topologies (three with circles and one with squares) were selected to investigate the effect of different hole shapes on the structural response. Second, the wave force at a specific site was calculated and loaded onto a steel plate as a static load. The static stresses were used for reference values. Third, two rigid body impacters (cubical & cylindrical) were applied to the steel plates to investigate the transient stress responses. In addition, two different impacting angles ($45^{\circ}\;&\;90^{\circ}$) were selected to investigate the angle effect. From the collision analysis, the significance of the transient stresses was emphasized.

DThe Effect of Thickness Ratio and Hight Ratio of Inner Beam on Strength and Stiffness of Frame in Shuttle Car for LMTT (Inner Beam의 두께비 및 높이비가 LMTT용 Shuttle Car의 Frame 강도 및 강성에 미치는 영향)

  • Han, GD.S.;Han, G.J.;Lee, K.S.;Shim, J.J.;Kim, T.H.
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.207-211
    • /
    • 2004
  • The final goal of this research is to establish the relative dangerousness D/B for factors on seakeeping performance. This D/B is essential to develope the seakeeping performance evaluation system built-on-ship. The system is composed of the apparatus for measuring a vertical acceleration to be generated by the ship's motions, computer for calculating the synthetic seakeeping performance index and monitor for displaying the evaluating diagram of navigational safety of ship. In this paper, a methodology on the establishment of the relative dangerousness D/B for factors on seakeeping performance is presented by a numerical simulations, playing an important role on the algorithm of the program for calculating the synthetic seakeeping performance index. Finally, It is investigated whether the relative dangerousness D/B can be realized an accurate values according to the loading conditions, weather conditions, wave directions end present ship's speed of a model ship.

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF