• Title/Summary/Keyword: Wave frequency

Search Result 4,100, Processing Time 0.029 seconds

Fabrication and Identification of Marx Generator for the Design of High Power Backward Wave Oscillator (대 전력 후진파 발진기의 설계를 위한 마르크스 발생기의 제작 및 검증)

  • Kim, Won-Seop;Hwang, Nak-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.391-399
    • /
    • 1999
  • We have designed the backward wave oscillator, a power-pulsed generator oscillated at 20 GHz has higher frequency than current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter (D/$\lambda$=4.8) of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density. We have fabricated a marx generator, pulse forming line and diode. And the development of a compact pulsed power generator with short period and low amplitude is expected.

  • PDF

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Dispersion-Based Continuous Wavelet Transform for the Analysis of Elastic Waves

  • Sun, Kyung-Ho;Hong, Jin-Chul;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2147-2158
    • /
    • 2006
  • The continuous wavelet transform (CWT) has a frequency-adaptive time-frequency tiling property, which makes it popular for the analysis of dispersive elastic wave signals. However, because the time-frequency tiling of CWT is not signal-dependent, it still has some limitations in the analysis of elastic waves with spectral components that are dispersed rapidly in time. The objective of this paper is to introduce an advanced time-frequency analysis method, called the dispersion-based continuous wavelet transform (D-CWT) whose time-frequency tiling is adaptively varied according to the dispersion relation of the waves to be analyzed. In the D-CWT method, time-frequency tiling can have frequency-adaptive characteristics like CWT and adaptively rotate in the time-frequency plane depending on the local wave dispersion. Therefore, D-CWT provides higher time-frequency localization than the conventional CWT. In this work, D-CWT method is applied to the analysis of dispersive elastic waves measured in waveguide experiments and an efficient procedure to extract information on the dispersion relation hidden in a wave signal is presented. In addition, the ridge property of the present transform is investigated theoretically to show its effectiveness in analyzing highly time-varying signals. Numerical simulations and experimental results are presented to show the effectiveness of the present method.

A Study On the Development of Fully-digitalized High Frequency Sine Wave Power Supply (풀 디지털 High Frequency 정현파 전원장치 개발)

  • Ahn, Joon-seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.273-277
    • /
    • 2016
  • In this paper, we deals with the digitization of high frequency sine wave power supply using power source of high frequency surgical equipment and RF device. High frequency surgical equipment has been using commonly on medical surgery because of its merits such as programmable depth of incision, availability of incision and coagulation in the same device, increasing the usability on surgical side. However, the core part of the device is consists of vacuum tubes which are expensive, not ease to use and must be imported, therefore it is inevitable of high prices, forces to develop the fully digitized alternative technology. The fully digitized high frequency sine wave power supply for surgical device is proposed and verified by experimental results.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable

  • Zhang, Pengfei;Tang, Zhifeng;Duan, Yuanfeng;Yun, Chung Bang;Lv, Fuzai
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.481-493
    • /
    • 2018
  • Ultrasonic guided waves have attracted increasing attention for non-destructive testing (NDT) and structural health monitoring (SHM) of bridge cables. They offer advantages like single measurement, wide coverage of acoustical field, and long-range propagation capability. To design defect detection systems, it is essential to understand how guided waves propagate in cables and how to select the optimal excitation frequency and mode. However, certain cable characteristics such as multiple wires, anchorage, and polyethylene (PE) sheath increase the complexity in analyzing the guided wave propagation. In this study, guided wave modes for multi-wire bridge cables are identified by using a semi-analytical finite element (SAFE) technique to obtain relevant dispersion curves. Numerical results indicated that the number of guided wave modes increases, the length of the flat region with a low frequency of L(0,1) mode becomes shorter, and the cutoff frequency for high order longitudinal wave modes becomes lower, as the number of steel wires in a cable increases. These findings were used in design of transducers for defect detection and selection of the optimal wave mode and frequency for subsequent experiments. A magnetostrictive transducer system was used to excite and detect the guided waves. The applicability of the proposed approach for detecting and locating wire breakages was demonstrated for a cable with 37 wires. The present ultrasonic guided wave method has been found to be very responsive to the number of brokenwires and is thus capable of detecting defects with varying sizes.

The research of wide band vibration energy harvester using ocean wave (파도를 이용한 광대역 진동에너지 하베스터에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.596-602
    • /
    • 2013
  • In general, existed vibration energy harvester is optimum in electronic energy gleaned from vibration energy with fixed single frequency, because it is using resonance. But it is limit in electronic energy gleaned from ocean wave energy with variant frequency. This paper studied for width band vibration energy harvester that obtains electronic energy from ocean wave with infinite vibration energy in order to solve it. It is composed of buoy to occur resonance in the center frequency of ocean wave energy and the vibration system to occur resonance in the same frequency. As a result, existed vibration energy harvester using resonance maximized electronic energy conversion efficiency in single frequency, while proposed width band vibration energy harvester has merit that maximized electronic energy conversion efficiency in ocean wave with variant frequency.

A Study on the Measurement of Absorbption Characteristics for Ferrite Electromagnetic Wave Absorbers Using Parallel Stripline. (평형스트립라인을 이용한 페라이트계 전파흡수체의 특성측정에 관한 연구)

  • 김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 1993
  • The goal of this research is to get a measuring system for absorption characteristics over the frequency band with 30MHz to 1, 000MHz concerning the ferrite electromagnetic wave absorbers, for example, grid-type and sintered flat type, etc. It is, however, very difficult to measure the absorption characteristics as in low frequency as in 30 MHz. In this research, therefore, we propose a standing wave method using parallel striplines, fabricate the measuring system, and measure the characteristic of ferrite microwave absorbers using the proposed mea-suring system.

  • PDF

Experimental Study of Quality Factor on Slot Slow Waveguide (스롯형 지파도파관의 Q치의 실험적 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.585-587
    • /
    • 2009
  • A large diameter slot waveguide made backward wave oscillator is investigated experimentally. The parameters of slow wave structure are chosen so that the oscillation frequency is about 20 GHz. Plasma is produced by the beam and it has favorable effects on beam propagation and Cherncov oscillation. The output power strongly enhanced when the guiding magnetic field approaches to the fundamental electron cyclotron resonance.

Electromagnetic wave absorber with wide-band frequency characteristics using exponentially tapered ferrite (테이퍼부를 가지는 초광대역 페라이트 전파흡수체)

  • 김동일;전상엽
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.8-16
    • /
    • 1997
  • A wide band design method of an electromagnetic wave absorber with using exponentially tapered ferritic is proposed and discussed. A theoretical model using the equivalent material constants method is also proposed to analyze the regions varying sptially in the shape of ferrite. Based on the developed model, wide band electromagnetic wave absorbers with excellent reflectivity frequency charaateristics in the freqency rang eof 30MHz to 2,150MHz or 2,430MHz were designed.

  • PDF